Implicit iteration process for common fixed points of a finite family of strictly pseudocontractive maps

Convergence theorems for approximation of common fixed points of strictly pseudocontractive mappings of Browder–Petryshyn type are proved in Banach spaces using an implicit iteration scheme recently introduced by Xu and Ori [Numer. Funct. Anal. Optim. 22 (2001) 767–773].

[1]  Klaus Deimling,et al.  Zeros of accretive operators , 1974 .

[2]  M. O. Osilike,et al.  Demiclosedness Principle and Convergence Theorems for Strictly Pseudocontractive Mappings of Browder–Petryshyn Type☆ , 2001 .

[3]  S. Maruster,et al.  The solution by iteration of nonlinear equations in Hilbert spaces , 1977 .

[4]  B. Rhoades,et al.  Comments on two fixed point iteration methods , 1976 .

[5]  Hong-Kun Xu,et al.  AN IMPLICIT ITERATION PROCESS FOR NONEXPANSIVE MAPPINGS , 2001 .

[6]  Troy L. Hicks,et al.  On the Mann iteration process in a Hilbert space , 1977 .

[7]  Shih-Sen Chang,et al.  Some problems and results in the study of nonlinear analysis , 1997 .

[8]  F. Browder,et al.  Construction of fixed points of nonlinear mappings in Hilbert space , 1967 .

[9]  M. Osilike STRONG AND WEAK CONVERGENCE OF THE ISHIKAWA ITERATION METHOD FOR A CLASS OF NONLINEAR EQUATIONS , 2000 .

[10]  B. Rhoades,et al.  Fixed point iterations using infinite matrices , 1974 .

[11]  V. Lakshmikantham,et al.  Nonlinear equations in abstract spaces , 1978 .

[12]  Z. Opial Weak convergence of the sequence of successive approximations for nonexpansive mappings , 1967 .

[13]  Zhao-hong Sun,et al.  Strong convergence of an implicit iteration process for a finite family of asymptotically quasi-nonexpansive mappings , 2003 .

[14]  S. Reich ITERATIVE METHODS FOR ACCRETIVE SETS , 1978 .

[15]  Felix E. Browder,et al.  Nonlinear mappings of nonexpansive and accretive type in Banach spaces , 1967 .