M2 to D2 revisited

We present two derivations of the multiple D2 action from the multiple M2-brane model proposed by Bagger-Lambert and Gustavsson. The first one is to start from Lie 3-algebra associated with given (arbitrary) Lie algebra. The Lie 3-algebra metric is not positive definite but the zero-norm generators merely correspond to Lagrange multipliers. Following the work of Mukhi and Papageorgakis, we derive D2-brane action from the model by giving a variable a vacuum expectation value. The second derivation is based on the correspondence between M2 and M5. We compactify one dimension and wind M5-brane along this direction. This leads to a noncommutative D4 action. Multiple D2 action is then obtained by suitably choosing the non-commutative parameter on the two-torus. It also implies a natural interpretation to the extra generator in Lie 3-algebra, namely the winding of M5 world volume around S1 which defines the reduction of M theory to IIA superstring.

[1]  Michel Goze,et al.  n-Lie algebras , 2009, 0909.1419.

[2]  Andreas Gustavsson Algebraic structures on parallel M2-branes , 2007, 0709.1260.

[3]  Houman Safaai,et al.  Exploring Pure Spinor String Theory on AdS_4 x CP^3 , 2008, 0808.1051.

[4]  A. Morozov On the problem of multiple M2 branes , 2008 .

[5]  P. Ho,et al.  M5-brane in three-form flux and multiple M2-branes , 2008, 0805.2898.

[6]  J. Russo,et al.  Bagger-Lambert Theory for General Lie Algebras , 2008, 0805.1012.

[7]  P. Ho,et al.  M5 from M2 , 2008, 0804.3629.

[8]  G. Papadopoulos On the structure of k-Lie algebras , 2008, 0804.3567.

[9]  J. Gauntlett,et al.  Constraining Maximally Supersymmetric Membrane Actions , 2008, 0804.3078.

[10]  Kimyeong M. Lee,et al.  Mass-deformed Bagger-Lambert theory and its BPS objects , 2008, 0804.2519.

[11]  G. Papadopoulos M2-branes, 3-Lie algebras and Plucker relations , 2008, 0804.2662.

[12]  F. Passerini,et al.  Matrix theory of type IIB plane wave from membranes , 2008, 0804.2186.

[13]  P. Ho,et al.  Lie 3-Algebra and Multiple M2-branes , 2008, 0804.2110.

[14]  Christoffer Petersson,et al.  On relating multiple M2 and D2-branes , 2008, 0804.1784.

[15]  M. Raamsdonk,et al.  M2-branes on M-folds , 2008, 0804.1256.

[16]  D. Tong,et al.  Membranes on an orbifold. , 2008, Physical review letters.

[17]  M. Raamsdonk Comments on the Bagger-Lambert theory and multiple M2-branes , 2008, 0803.3803.

[18]  D. Berman,et al.  Aspects of multiple membranes , 2008, 0803.3611.

[19]  Sunil Mukhi,et al.  D2 to D2 , 2008, 0806.1639.

[20]  Andreas Gustavsson Selfdual strings and loop space Nahm equations , 2008, 0802.3456.

[21]  J. Bagger,et al.  Comments on multiple M2-branes , 2007, 0712.3738.

[22]  Neil Lambert,et al.  Gauge symmetry and supersymmetry of multiple M2-branes , 2007, 0711.0955.

[23]  D. Berman M-theory branes and their interactions , 2007, 0710.1707.

[24]  P. Ho,et al.  A toy model of open membrane field theory in constant 3-form flux , 2007, hep-th/0701130.

[25]  J. Bagger,et al.  Modeling multiple M2-branes , 2006, hep-th/0611108.

[26]  M. Bandres,et al.  Superconformal Chern-Simons theories , 2004, hep-th/0411077.

[27]  Y. Kawamura Cubic Matrices, Generalized Spin Algebra and Uncertainty Relation(Particles and Fields) , 2003, hep-th/0304149.

[28]  C. Zachos,et al.  Classical and quantum Nambu mechanics , 2002, hep-th/0212267.

[29]  Y. Kawamura Cubic Matrix, Nambu Mechanics and Beyond , 2002, hep-th/0207054.

[30]  Yoshiharu Kawaniura Cubic matrices, generalized spin algebra and uncertainty relation , 2003 .

[31]  G. Papadopoulos,et al.  Plucker-type relations for orthogonal planes , 2002, math/0211170.

[32]  T. Curtright,et al.  Deformation quantization of superintegrable systems and Nambu mechanics , 2002, hep-th/0205063.

[33]  B. Pioline Comments on the topological open membrane , 2002, hep-th/0201257.

[34]  Y. Matsuo,et al.  Volume preserving diffeomorphism and noncommutative branes , 2000, hep-th/0010040.

[35]  D. Minic,et al.  On the quantization of Nambu brackets , 1999, hep-th/9906248.

[36]  N. Sasakura,et al.  Open membranes in a constant C field background and noncommutative boundary strings , 2000, hep-th/0005123.

[37]  J. Schaar,et al.  A Noncommutative M theory five-brane , 2000, hep-th/0005026.

[38]  N. Ishibashi A Relation Between Commutative and Noncommutative Descriptions of D-Branes , 1999, hep-th/9909176.

[39]  L. Cornalba D-brane Physics and Noncommutative Yang-Mills Theory , 1999, hep-th/9909081.

[40]  L. Cornalba,et al.  Matrix Theory Star Products from the Born-Infeld Action , 1999, hep-th/9907211.

[41]  I. Vaisman A survey on Nambu-Poisson brackets. , 1999, math/9901047.

[42]  N. Ishibashi p-Branes from (p − 2)-branes in bosonic string theory , 1998, hep-th/9804163.

[43]  Nobutada Nakanishi On Nambu–Poisson Manifolds , 1998 .

[44]  P. Michor,et al.  n-ary Lie and Associative Algebras , 1998, math/9801087.

[45]  G. Marmo,et al.  The local structure of n-Poisson and n-Jacobi manifolds☆ , 1997 .

[46]  D. D. Diego,et al.  Dynamics of generalized Poisson and Nambu–Poisson brackets , 1997 .

[47]  J. M. Izquierdo,et al.  On the generalizations of Poisson structures , 1997 .

[48]  J. M. Izquierdo,et al.  LETTER TO THE EDITOR: On the higher-order generalizations of Poisson structures , 1997, hep-th/9703019.

[49]  J. Schwarz Lectures on superstring and M theory dualities , 1996, hep-th/9607201.

[50]  Philippe Gautheron Some remarks concerning Nambu mechanics , 1996 .

[51]  M. Flato,et al.  Deformation quantization and Nambu Mechanics , 1996, hep-th/9602016.

[52]  J. Hoppe On M-Algebras, the Quantisation of Nambu-Mechanics, and Volume Preserving Diffeomorphisms , 1996, hep-th/9602020.

[53]  J. A. Azcárraga,et al.  New generalized Poisson structures , 1996, q-alg/9601007.

[54]  P. Guha,et al.  On decomposability of Nambu-Poisson tensor. , 1996 .

[55]  P. Townsend D-branes from M-branes , 1995, hep-th/9512062.

[56]  P. Hanlon,et al.  On lie k-algebras , 1995 .

[57]  L. Takhtajan On foundation of the generalized Nambu mechanics , 1993, hep-th/9301111.

[58]  M. Duff,et al.  Type II p-branes: the brane-scan revisited , 1992, hep-th/9207060.

[59]  J. Stasheff,et al.  The Lie algebra structure of tangent cohomology and deformation theory , 1985 .

[60]  Paul Adrien Maurice Dirac,et al.  Generalized Hamiltonian dynamics , 1958, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.