Effective electrode configuration for selective stimulation with inner eye prostheses

The quality of visual perception with retinal prostheses strongly depends on the local selectivity. Electrode arrays at the surface of the retina should excite exclusively cells within a local area but they are expected to co-stimulate bypassing axons originating from ganglion cells of the outer regions. Long electrodes parallel to these axons are shown to be good candidates for avoiding the co-stimulation phenomenon. Efficiency of focal excitation depends on the length and resistance of the electrodes.

[1]  L. Geddes,et al.  The specific resistance of biological material—A compendium of data for the biomedical engineer and physiologist , 1967, Medical and biological engineering.

[2]  F. Rattay,et al.  A Model for the Electrically Stimulated Retina , 2004 .

[3]  Bert Sakmann,et al.  Scotopic and mesopic light adaptation in the cat's retina , 1969, Pflügers Archiv.

[4]  Adam Jacobs,et al.  How Neural Interactions Form Neural Responses in the Salamander Retina , 2004, Journal of Computational Neuroscience.

[5]  Thomas Stieglitz,et al.  Chronically implanted epidural electrodes in Göttinger minipigs allow function tests of epiretinal implants , 2003, Graefe's Archive for Clinical and Experimental Ophthalmology.

[6]  Gislin Dagnelie,et al.  Visual perception in a blind subject with a chronic microelectronic retinal prosthesis , 2003, Vision Research.

[7]  R. Jensen,et al.  Thresholds for Direct and Indirect Activation of Ganglion Cells With an Epiretinal Electrode: Effect of Stimulus Duration and Electrode Size , 2003 .

[8]  F. Rattay,et al.  Mechanisms of Electrical Stimulation with Neural Prostheses , 2003, Neuromodulation : journal of the International Neuromodulation Society.

[9]  Peter G. LoPresti,et al.  Handbook of Neuroprosthetic Methods , 2002 .

[10]  Thomas Schanze,et al.  Activation zones in cat visual cortex evoked by electrical retina stimulation , 2002, Graefe's Archive for Clinical and Experimental Ophthalmology.

[11]  J. Weiland,et al.  Retinal prosthesis for the blind. , 2002, Survey of ophthalmology.

[12]  M. Schubert,et al.  Subretinales Mikrophotodioden-Array als Ersatz für degenerierte Photorezeptoren? , 2001, Der Ophthalmologe.

[13]  A. Y. Chow,et al.  Implantation of silicon chip microphotodiode arrays into the cat subretinal space , 2001, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[14]  E Zrenner,et al.  [Subretinal microphotodiode array as replacement for degenerated photoreceptors?]. , 2001, Der Ophthalmologe : Zeitschrift der Deutschen Ophthalmologischen Gesellschaft.

[15]  Frank Rattay,et al.  Basics of hearing theory and noise in cochlear implants , 2000 .

[16]  J. Rizzo,et al.  Multi-electrode stimulation and recording in the isolated retina , 2000, Journal of Neuroscience Methods.

[17]  E. Zrenner,et al.  Electrical multisite stimulation of the isolated chicken retina , 2000, Vision Research.

[18]  J. Weiland,et al.  Pattern electrical stimulation of the human retina , 1999, Vision Research.

[19]  T. Velte,et al.  A computational model of electrical stimulation of the retinal ganglion cell , 1999, IEEE Transactions on Biomedical Engineering.

[20]  F. Rattay,et al.  The basic mechanism for the electrical stimulation of the nervous system , 1999, Neuroscience.

[21]  Andrew Eli Grumet,et al.  Electric stimulation parameters for an epi-retinal prosthesis , 1999 .

[22]  F. Rattay,et al.  Analysis of the electrical excitation of CNS neurons , 1998, IEEE Transactions on Biomedical Engineering.

[23]  J. Fohlmeister,et al.  Mechanisms by which cell geometry controls repetitive impulse firing in retinal ganglion cells. , 1997, Journal of neurophysiology.

[24]  J. Fohlmeister,et al.  Impulse encoding mechanisms of ganglion cells in the tiger salamander retina. , 1997, Journal of neurophysiology.

[25]  R. Eckmiller Learning retina implants with epiretinal contacts. , 1997, Ophthalmic research.

[26]  S. Usui,et al.  Ionic current model of bipolar cells in the lower vertebrate retina , 1996, Vision Research.

[27]  Andrew Eli Grumet,et al.  Extracellular electrical stimulation of retinal ganglion cells , 1994 .

[28]  P. L. Carras,et al.  Site of action potential initiation in amphibian retinal ganglion cells. , 1992, Journal of neurophysiology.

[29]  R. Miller,et al.  Measurement of passive membrane parameters with whole-cell recording from neurons in the intact amphibian retina. , 1989, Journal of neurophysiology.

[30]  R. Plonsey,et al.  The Effects of Variations of the Conducting Media Inhomogeneities on the Electroretinogram , 1980, IEEE Transactions on Biomedical Engineering.

[31]  H. E. Derksen,et al.  Fluctuation phenomena in nerve membrane , 1968 .