Finite difference time domain methods

In this chapter the fundamentals of the Finite Difference Time Domain (FDTD) method to solve Maxwell’s curl equations in the time domain are given in a concise operational form. The Perfectly Matched Layer truncation techniques are explained, together with the connection between the split and the Maxwellian formulation, both for the E–H and for the material–independent D–B formulation. Attention is later paid to the still under development unconditionally stable schemes, especially the ADI–FDTD, which is broadening the computational efficiency of the method, since the time increment is no longer restricted by the Courant stability criterion as is in the classical FDTD case. Then, the material implementation in FDTD is studied, describing in some detail the simulation of Debye media with the FDTD–PML and with the ADI–FDTD. Finally some references of the geometrical modeling are summarized.

[1]  S. Garcia,et al.  Bipml: a pml to match waves in bianisotropic media , 1999 .

[2]  J. Beggs A two-dimensional linear bicharacteristic FDTD method , 2002, IEEE Antennas and Propagation Society International Symposium (IEEE Cat. No.02CH37313).

[3]  Antti V. Räisänen,et al.  A UNIFIED LOOK AT BERENGER'S PML FOR GENERAL ANISOTROPIC MEDIA , 2001 .

[4]  An Ping Zhao,et al.  Generalized material-independent PML absorbers for the FDTD simulation of electromagnetic waves in arbitrary anisotropic dielectric and magnetic media , 1998 .

[5]  Raymond J. Luebbers,et al.  FDTD for Nth-order dispersive media , 1992 .

[6]  Weng Cho Chew,et al.  A general approach to extend Berenger's absorbing boundary condition to anisotropic and dispersive media , 1998 .

[7]  J. B. Cole A high-accuracy realization of the Yee algorithm using non-standard finite differences , 1997 .

[8]  R. J. Joseph,et al.  Advances in Computational Electrodynamics: The Finite - Di erence Time - Domain Method , 1998 .

[9]  Jose L. Cruz,et al.  Modelling of periodic structures using the finite difference time domain method combined with the Floquet theorem , 1993 .

[10]  Tae-Woo Lee,et al.  On the accuracy of the ADI-FDTD method , 2002, IEEE Antennas and Wireless Propagation Letters.

[11]  J. Beggs,et al.  An implicit LU/AF FDTD method , 2001, IEEE Antennas and Propagation Society International Symposium. 2001 Digest. Held in conjunction with: USNC/URSI National Radio Science Meeting (Cat. No.01CH37229).

[12]  Allen Taflove,et al.  Computational Electrodynamics the Finite-Difference Time-Domain Method , 1995 .

[13]  Weng Cho Chew,et al.  ELECTROMAGNETIC THEORY ON A LATTICE , 1994 .

[14]  Ismo V. Lindell,et al.  Electromagnetic Waves in Chiral and Bi-Isotropic Media , 1994 .

[15]  Omar M. Ramahi,et al.  The concurrent complementary operators method for FDTD mesh truncation , 1998 .

[16]  N. Mullineux,et al.  Solution of parabolic partial differential equations , 1981 .

[17]  Raj Mittra,et al.  Frequency dependence of the constitutive parameters of causal perfectly matched anisotropic absorbers , 1996 .

[18]  L. Trefethen Group velocity interpretation of the stability theory of Gustafsson, Kreiss, and Sundström , 1983 .

[19]  Endre Süli,et al.  Error estimates for Yee's method on non-uniform grids , 1994 .

[20]  Amelia Rubio Bretones,et al.  Extension of the ADI-FDTD method to Debye media , 2003 .

[21]  Gang Liu,et al.  Perfectly matched layer media with CFS for an unconditionally stable ADI-FDTD method , 2001 .

[22]  Chebyshev method to solve the time-dependent Maxwell equations , 2003 .

[23]  Richard W. Ziolkowski,et al.  A Three-Dimensional Modified Finite Volume Technique for Maxwell's Equations , 1990 .

[24]  Dennis M. Sullivan,et al.  Frequency-dependent FDTD methods using Z transforms , 1992 .

[25]  K. Yee Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media , 1966 .

[26]  K. Mei,et al.  A super-absorbing boundary algorithm for solving electromagnetic problems by time-domain finite-difference method , 1988, 1988 IEEE AP-S. International Symposium, Antennas and Propagation.

[27]  Dennis M. Sullivan,et al.  Electromagnetic Simulation Using the FDTD Method , 2000 .

[28]  I. V. Perez,et al.  GENERALIZATION OF BERENGER'S ABSORBING BOUNDARY CONDITIONS FOR 3-D MAGNETIC AND DIELECTRIC ANISOTROPIC MEDIA , 1998 .

[29]  R.J. Luebbers,et al.  FDTD local grid with material traverse , 1996, IEEE Antennas and Propagation Society International Symposium. 1996 Digest.

[30]  Carey M. Rappaport,et al.  Perfectly matched absorbing boundary conditions based on anisotropic lossy mapping of space , 1995 .

[31]  D. Merewether,et al.  On Implementing a Numeric Huygen's Source Scheme in a Finite Difference Program to Illuminate Scattering Bodies , 1980, IEEE Transactions on Nuclear Science.

[32]  A Taflove,et al.  Direct time integration of Maxwell's equations in linear dispersive media with absorption for scattering and propagation of femtosecond electromagnetic pulses. , 1991, Optics letters.

[33]  Two-Level Difference Schemes for Hyperbolic Systems , 1966 .

[34]  Jean-Pierre Berenger,et al.  A perfectly matched layer for the absorption of electromagnetic waves , 1994 .

[35]  T. Weiland Time Domain Electromagnetic Field Computation with Finite Difference Methods , 1996 .

[36]  A. R. Mitchell,et al.  The Finite Difference Method in Partial Differential Equations , 1980 .

[37]  Salvador García,et al.  On the application of finite methods in time domain to anisotropic dielectric waveguides , 1996 .

[38]  José A. Pereda,et al.  State-space approach to the FDTD formulation for dispersive media , 1995 .

[39]  Zhizhang Chen,et al.  Numerical dispersion analysis of the unconditionally stable 3-D ADI-FDTD method , 2001 .

[40]  Simulation using the finite difference time domain (FDTD) method , 2002 .

[41]  G. Mur Absorbing Boundary Conditions for the Finite-Difference Approximation of the Time-Domain Electromagnetic-Field Equations , 1981, IEEE Transactions on Electromagnetic Compatibility.

[42]  Time-domain inverse scattering of a chiral slab , 1999, 1999 Asia Pacific Microwave Conference. APMC'99. Microwaves Enter the 21st Century. Conference Proceedings (Cat. No.99TH8473).

[43]  G. Smith,et al.  Numerical Solution of Partial Differential Equations: Finite Difference Methods , 1978 .

[44]  W. Chew,et al.  Systematic derivation of anisotropic PML absorbing media in cylindrical and spherical coordinates , 1997 .

[45]  Yansheng Jiang,et al.  A hybrid 2-D ADI-FDTD subgridding scheme , 2001, 6th International SYmposium on Antennas, Propagation and EM Theory, 2003. Proceedings. 2003.

[46]  Richard Holland,et al.  THREDS: A Finite-Difference Time-Domain EMP Code in 3d Spherical Coordinates , 1983, IEEE Transactions on Nuclear Science.

[47]  R. Holland Finite-Difference Solution of Maxwell's Equations in Generalized Nonorthogonal Coordinates , 1983, IEEE Transactions on Nuclear Science.

[48]  Douglas H. Werner,et al.  BI-FDTD: A new technique for modeling electromagnetic wave interaction with bi-isotropic media , 2000 .

[49]  H. H. Rachford,et al.  The Numerical Solution of Parabolic and Elliptic Differential Equations , 1955 .

[50]  A. Taflove The Finite-Difference Time-Domain Method , 1995 .

[51]  M. Fusco,et al.  FDTD algorithm in curvilinear coordinates (EM scattering) , 1990 .

[52]  R. Holland,et al.  Pitfalls of staircase meshing , 1993 .

[53]  Allen Taflove,et al.  Three-dimensional contour FDTD modeling of scattering from single and multiple bodies , 1993 .

[54]  Allen Taflove,et al.  FDTD Maxwell's equations models for nonlinear electrodynamics and optics , 1997 .

[55]  J. S. Kole,et al.  Higher-order unconditionally stable algorithms to solve the time-dependent Maxwell equations. , 2001, physics/0112069.

[56]  Zhizhang Chen,et al.  A finite-difference time-domain method without the Courant stability conditions , 1999 .

[57]  T. Namiki,et al.  A new FDTD algorithm based on alternating-direction implicit method , 1999 .

[58]  Weng Cho Chew,et al.  A 3D perfectly matched medium from modified maxwell's equations with stretched coordinates , 1994 .

[59]  R. J. Luebbers,et al.  Piecewise linear recursive convolution for dispersive media using FDTD , 1996 .

[60]  M. Krumpholz,et al.  MRTD: new time-domain schemes based on multiresolution analysis , 1996 .

[61]  S. Gedney An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices , 1996 .

[62]  Michael A. Jensen,et al.  A massively parallel computation strategy for FDTD: time and space parallelism applied to electromagnetics problems , 1995 .

[63]  R. Mickens Nonstandard Finite Difference Models of Differential Equations , 1993 .

[64]  M. Suzuki,et al.  General theory of fractal path integrals with applications to many‐body theories and statistical physics , 1991 .

[65]  S. González García,et al.  A time‐domain near‐ to far‐field transformation for FDTD in two dimensions , 2000 .

[66]  David Gottlieb,et al.  A Mathematical Analysis of the PML Method , 1997 .

[67]  Stephen D. Gedney,et al.  Perfectly matched layer media for an unconditionally stable three-dimensional ADI-FDTD method , 2000 .

[68]  Stephen D. Gedney,et al.  Convolution PML (CPML): An efficient FDTD implementation of the CFS–PML for arbitrary media , 2000 .

[69]  Qing Huo Liu,et al.  The PSTD algorithm: A time-domain method requiring only two cells per wavelength , 1997 .

[70]  Mario F. Pantoja,et al.  Unsplit Berenger's PML equations for arbitrary media , 2001 .

[71]  H. Kreiss,et al.  Stability Theory of Difference Approximations for Mixed Initial Boundary Value Problems. II , 1972 .

[72]  R. Luebbers,et al.  The Finite Difference Time Domain Method for Electromagnetics , 1993 .

[73]  Cj Railton,et al.  Stabilised CPFDTD algorithm for the analysis of arbitrary 3D PEC structures , 1996 .

[74]  D. Fang,et al.  Modified Berenger PML absorbing boundary condition for FD-TD meshes , 1995 .

[75]  J.-P. Wrenger,et al.  Numerical reflection from FDTD-PMLs: a comparison of the split PML with the unsplit and CFS PMLs , 2002 .

[76]  Jin-Fa Lee,et al.  A perfectly matched anisotropic absorber for use as an absorbing boundary condition , 1995 .