Evaluation of Large-scale Optimization Problems on Vector and Parallel Architectures

The authors examine the importance of problem formulation for the solution of large-scale optimization problems on high-performance architectures. Limited memory variable metric methods are used to illustrate performance issues. It is shown that the performance of these algorithms is drastically affected by application implementation. Model applications are drawn from the MINPACK-2 test problem collection, with numerical results from a super-scalar architecture (IBM RS6000/370), a vector architecture (CRAY-2), and a massively parallel architecture (Intel DELTA).

[1]  William M. Waite,et al.  Software manual for the elementary functions , 1980 .

[2]  J. J. Moré,et al.  Estimation of sparse jacobian matrices and graph coloring problems , 1983 .

[3]  P. Toint,et al.  Optimal estimation of Jacobian and Hessian matrices that arise in finite difference calculations , 1984 .

[4]  Thomas F. Coleman,et al.  Software for estimating sparse Jacobian matrices , 1984, ACM Trans. Math. Softw..

[5]  S. Nash Preconditioning of Truncated-Newton Methods , 1985 .

[6]  Jorge Nocedal,et al.  On the limited memory BFGS method for large scale optimization , 1989, Math. Program..

[7]  Jorge Nocedal,et al.  The Performance of Several Algorithms for Large Scale Unconstrained Optimization , 1990 .

[8]  Jorge Nocedal,et al.  A Numerical Study of the Limited Memory BFGS Method and the Truncated-Newton Method for Large Scale Optimization , 1991, SIAM J. Optim..

[9]  Guoliang Xue,et al.  The MINPACK-2 test problem collection , 1992 .

[10]  Tamar Schlick,et al.  TNPACK—A truncated Newton minimization package for large-scale problems: I. Algorithm and usage , 1992, TOMS.

[11]  Robert S. Maier Large–scale minimization on the CM-200 , 1992 .

[12]  William Gropp,et al.  Users manual for the Chameleon Parallel Programming Tools , 1993 .

[13]  Jack Dongarra,et al.  Performance of various computers using standard sparse linear equations solving techniques , 1993 .

[14]  François-Xavier Le Dimet,et al.  Numerical Experience with Limited-Memory Quasi-Newton and Truncated Newton Methods , 1993, SIAM J. Optim..

[15]  Mark T. Jones,et al.  Computation of Equilibrium Vortex Structures for Type-II Superconductors , 1993, Int. J. High Perform. Comput. Appl..

[16]  Andreas Griewank,et al.  Computing Large Sparse Jacobian Matrices Using Automatic Differentiation , 1994, SIAM J. Sci. Comput..

[17]  David J. Thuente,et al.  Line search algorithms with guaranteed sufficient decrease , 1994, TOMS.