Anisotropic Delaunay Meshes of Surfaces

Anisotropic simplicial meshes are triangulations with elements elongated along prescribed directions. Anisotropic meshes have been shown well suited for interpolation of functions or solving PDEs. They can also significantly enhance the accuracy of a surface representation. Given a surface S endowed with a metric tensor field, we propose a new approach to generate an anisotropic mesh that approximates S with elements shaped according to the metric field. The algorithm relies on the well-established concepts of restricted Delaunay triangulation and Delaunay refinement and comes with theoretical guarantees. The star of each vertex in the output mesh is Delaunay for the metric attached to this vertex. Each facet has a good aspect ratio with respect to the metric specified at any of its vertices. The algorithm is easy to implement. It can mesh various types of surfaces like implicit surfaces, polyhedra, or isosurfaces in 3D images. It can handle complicated geometries and topologies, and very anisotropic metric fields.

[1]  S. SIAMJ. ANISOTROPIC CENTROIDAL VORONOI TESSELLATIONS AND THEIR APPLICATIONS∗ , 2004 .

[2]  Jonathan Richard Shewchuk,et al.  What Is a Good Linear Finite Element , 2002 .

[3]  Mariette Yvinec,et al.  Locally uniform anisotropic meshing , 2008, SCG '08.

[4]  Steven J. Gortler,et al.  Orphan-Free Anisotropic Voronoi Diagrams , 2011, Discret. Comput. Geom..

[5]  Jonathan Richard Shewchuk,et al.  Star splaying: an algorithm for repairing delaunay triangulations and convex hulls , 2005, SCG.

[6]  J. Mirebeau Optimal Meshes for Finite Elements of Arbitrary Order , 2010, 1101.0612.

[7]  Tamal K. Dey,et al.  Anisotropic surface meshing , 2006, SODA '06.

[8]  L. Paul Chew,et al.  Guaranteed-quality mesh generation for curved surfaces , 1993, SCG '93.

[9]  Anath Fischer,et al.  Anisotropic meshing of implicit surfaces , 2005, International Conference on Shape Modeling and Applications 2005 (SMI' 05).

[10]  Marc Pouget,et al.  Estimating differential quantities using polynomial fitting of osculating jets , 2003, Comput. Aided Geom. Des..

[11]  Xiang-Yang Li,et al.  Biting Ellipses to Generate Anisotropic Mesh , 1999, IMR.

[12]  John Hart,et al.  ACM Transactions on Graphics , 2004, SIGGRAPH 2004.

[13]  Xiang-Yang Li,et al.  Generating well-shaped Delaunay meshed in 3D , 2001, SODA '01.

[14]  B. Lévy,et al.  L p Centroidal Voronoi Tessellation and its applications , 2010, SIGGRAPH 2010.

[15]  Xiangmin Jiao,et al.  Anisotropic mesh adaptation for evolving triangulated surfaces , 2006, Engineering with Computers.

[16]  Pierre Alliez,et al.  Computational geometry algorithms library , 2008, SIGGRAPH '08.

[17]  Mariette Yvinec,et al.  Anisotropic Delaunay Mesh Generation , 2015, SIAM J. Comput..

[18]  Jean-Daniel Boissonnat,et al.  Manifold Reconstruction Using Tangential Delaunay Complexes , 2010, Discrete & Computational Geometry.

[19]  Pierre Alliez,et al.  CGAL - The Computational Geometry Algorithms Library , 2011 .

[20]  Jonathan Richard Shewchuk,et al.  What is a Good Linear Element? Interpolation, Conditioning, and Quality Measures , 2002, IMR.

[21]  Michael Garland,et al.  Optimal triangulation and quadric-based surface simplification , 1999, Comput. Geom..

[22]  Mariette Yvinec,et al.  Variational tetrahedral meshing , 2005, ACM Trans. Graph..

[23]  ShiKan-Le,et al.  Anisotropic Delaunay Meshes of Surfaces , 2015 .

[24]  Steve Oudot,et al.  Provably good sampling and meshing of surfaces , 2005, Graph. Model..

[25]  B. Lévy,et al.  Lp Centroidal Voronoi Tessellation and its applications , 2010, ACM Trans. Graph..

[26]  R. B. Simpson,et al.  On optimal interpolation triangle incidences , 1989 .

[27]  Joshua A. Levine,et al.  Delaunay Meshing of Piecewise Smooth Complexes without Expensive Predicates , 2009, Algorithms.

[28]  Xiang-Yang Li Generating Well-Shaped d-dimensional Delaunay Meshes , 2001, COCOON.

[29]  David Letscher,et al.  Delaunay triangulations and Voronoi diagrams for Riemannian manifolds , 2000, SCG '00.

[30]  Sunghee Choi,et al.  A simple algorithm for homeomorphic surface reconstruction , 2000, SCG '00.

[31]  Pierre Alliez,et al.  Mesh Sizing with Additively Weighted Voronoi Diagrams , 2007, IMR.

[32]  P. George,et al.  Delaunay mesh generation governed by metric specifications. Part I algorithms , 1997 .

[33]  Jonathan Richard Shewchuk,et al.  Anisotropic voronoi diagrams and guaranteed-quality anisotropic mesh generation , 2003, SCG '03.

[34]  J. Shewchuk What Is a Good Linear Finite Element? Interpolation, Conditioning, Anisotropy, and Quality Measures , 2002 .

[35]  Marshall W. Bern,et al.  Surface Reconstruction by Voronoi Filtering , 1998, SCG '98.

[36]  Pierre Alliez,et al.  Anisotropic polygonal remeshing , 2003, ACM Trans. Graph..

[37]  Paul S. Heckbert,et al.  A Pliant Method for Anisotropic Mesh Generation , 1996 .