Reconstruction of Scattered Data in Fetal Diffusion MRI

In this paper we present a method for reconstructing diffusion-weighted MRI data on regular grids from scattered data. The proposed method has the advantage that no specific diffusion model needs to be assumed. Previous work assume the tensor model, but this is not suitable under certain conditions like intravoxel orientational heterogeneity (IVOH). Data reconstruction is particularly important when studying the fetal brain in utero, since registration methods applied for movement and distortion correction produce scattered data in spatial and diffusion domains. We propose the use of a groupwise registration method, and a dual spatio-angular interpolation by using radial basis functions (RBF). Leave-one-out experiments performed on adult data showed a high accuracy of the method. The application to fetal data showed an improvement in the quality of the sequences according to objective criteria based on fractional anisotropy (FA) maps, and differences in the tractography results.

[1]  Lana Vasung,et al.  Insights from in vitro fetal magnetic resonance imaging of cerebral development. , 2009, Seminars in perinatology.

[2]  Thomas Netsch,et al.  Quantitative evaluation of image-based distortion correction in diffusion tensor imaging , 2004, IEEE Transactions on Medical Imaging.

[3]  N. Chen,et al.  Optimized distortion correction technique for echo planar imaging , 2001, Magnetic resonance in medicine.

[4]  Jean-Luc Daire,et al.  Microstructural development of human brain assessed in utero by diffusion tensor imaging , 2006, Pediatric Radiology.

[5]  A. Snyder,et al.  Diffusion-tensor MR imaging of gray and white matter development during normal human brain maturation. , 2002, AJNR. American journal of neuroradiology.

[6]  Daniela Prayer,et al.  Diffusion-weighted magnetic resonance imaging of cerebral white matter development. , 2003, European journal of radiology.

[7]  J. Pekar,et al.  Echo-planar imaging of intravoxel incoherent motion. , 1990, Radiology.

[8]  J. E. Tanner,et al.  Spin diffusion measurements : spin echoes in the presence of a time-dependent field gradient , 1965 .

[9]  Colin Studholme,et al.  Intersection Based Motion Correction of Multislice MRI for 3-D in Utero Fetal Brain Image Formation , 2010, IEEE Transactions on Medical Imaging.

[10]  Stefan Skare,et al.  How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging , 2003, NeuroImage.

[11]  James R. Moore,et al.  Correction for distortion of echo‐planar images used to calculate the apparent diffusion coefficient , 1996, Magnetic resonance in medicine.

[12]  Stefan Skare,et al.  A Model-Based Method for Retrospective Correction of Geometric Distortions in Diffusion-Weighted EPI , 2002, NeuroImage.

[13]  Guy Marchal,et al.  Multimodality image registration by maximization of mutual information , 1997, IEEE Transactions on Medical Imaging.

[14]  Dong-Hyun Kim,et al.  Diffusion‐weighted imaging of the fetal brain in vivo , 2008, Magnetic resonance in medicine.

[15]  William H. Press,et al.  Numerical Recipes 3rd Edition: The Art of Scientific Computing , 2007 .

[16]  Isabelle Bloch,et al.  Eddy-Current Distortion Correction and Robust Tensor Estimation for MR Diffusion Imaging , 2001, MICCAI.

[17]  Jean Meunier,et al.  Average Brain Models: A Convergence Study , 2000, Comput. Vis. Image Underst..

[18]  N. Makris,et al.  High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity , 2002, Magnetic resonance in medicine.

[19]  Mariko Goto,et al.  Optimum b value for resolving crossing fibers: a study with standard clinical b value using 1.5-T MR , 2010, Neuroradiology.

[20]  R. Stollberger,et al.  Improved diffusion‐weighted single‐shot echo‐planar imaging (EPI) in stroke using sensitivity encoding (SENSE) , 2001, Magnetic resonance in medicine.

[21]  Maria Francesca Carfora Interpolation on spherical geodesic grids: A comparative study , 2007 .

[22]  Ludovico Minati,et al.  Physical foundations, models, and methods of diffusion magnetic resonance imaging of the brain: A review , 2007 .

[23]  C. Pierpaoli,et al.  Characterization of and correction for eddy current artifacts in echo planar diffusion imaging , 1998, Magnetic resonance in medicine.

[24]  Andrea Righini,et al.  Demonstration of acute ischemic lesions in the fetal brain by diffusion magnetic resonance imaging , 2002, Annals of neurology.

[25]  M. Horsfield,et al.  Optimal strategies for measuring diffusion in anisotropic systems by magnetic resonance imaging , 1999, Magnetic resonance in medicine.

[26]  Alexander Leemans,et al.  The B‐matrix must be rotated when correcting for subject motion in DTI data , 2009, Magnetic resonance in medicine.

[27]  P. Basser,et al.  Comprehensive approach for correction of motion and distortion in diffusion‐weighted MRI , 2004, Magnetic resonance in medicine.

[28]  G. Marchal,et al.  Multi-modal volume registration by maximization of mutual information , 1997 .

[29]  Christopher Nimsky,et al.  Correction of susceptibility artifacts in diffusion tensor data using non-linear registration , 2007, Medical Image Anal..

[30]  Fabio Mosca,et al.  Apparent diffusion coefficient determination in normal fetal brain: a prenatal MR imaging study. , 2003, AJNR. American journal of neuroradiology.

[31]  Peter B. Roemer,et al.  4737716 Self-shielded gradient coils for nuclear magnetic resonance imaging , 1989 .

[32]  Murat Aksoy,et al.  Effects of motion and b‐matrix correction for high resolution DTI with short‐axis PROPELLER‐EPI , 2010, NMR in biomedicine.

[33]  Ashok Panigrahy,et al.  Affine and polynomial mutual information coregistration for artifact elimination in diffusion tensor imaging of newborns. , 2004, Magnetic resonance imaging.

[34]  Isabelle Bloch,et al.  Distortion correction and robust tensor estimation for MR diffusion imaging , 2002, Medical Image Anal..

[35]  Lucie Hertz-Pannier,et al.  Microstructural Correlates of Infant Functional Development: Example of the Visual Pathways , 2008, The Journal of Neuroscience.

[36]  Colin Studholme,et al.  Registration-based approach for reconstruction of high-resolution in utero fetal MR brain images. , 2006, Academic radiology.

[37]  Mary A. Rutherford,et al.  Diffusion tensor imaging with tract-based spatial statistics reveals local white matter abnormalities in preterm infants , 2007, NeuroImage.

[38]  Daniel Rueckert,et al.  Diffusion tensor imaging (DTI) of the brain in moving subjects: Application to in‐utero fetal and ex‐utero studies , 2009, Magnetic resonance in medicine.

[39]  Simon K. Warfield,et al.  Robust Super-Resolution Volume Reconstruction From Slice Acquisitions: Application to Fetal Brain MRI , 2010, IEEE Transactions on Medical Imaging.

[40]  Gregor Kasprian,et al.  In utero tractography of fetal white matter development , 2008, NeuroImage.

[41]  Gregor Kasprian,et al.  MRI of normal fetal brain development. , 2006, European journal of radiology.