Proof of a Spectral Property related to the singularity formation for the L2 critical nonlinear Schrödinger equation

Abstract We give a proof of a Spectral Property related to the description of the singularity formation for the L 2 critical nonlinear Schrodinger equation i u t + Δ u + u | u | 4 N = 0 in dimensions N = 2 , 3 , 4 . Assuming this property, the rigorous mathematical analysis developed in a recent series of papers by Merle and Raphael provides a complete description of the collapse dynamics for a suitable class of initial data. In particular, this implies in dimension N = 2 the existence of a large class of solutions blowing up with the log–log speed | u ( t ) | H 1 ∼ log | log ( T − t ) T − t where T > 0 is the blow up time. This Spectral Property is equivalent to the coercivity of some Schrodinger type operators. An analytic proof is given in [F. Merle, P. Raphael, Blow up dynamic and upper bound on the blow up rate for critical nonlinear Schrodinger equation, Ann. of Math. 161 (1) (2005) 157–222] in dimension N = 1 and in this paper, we give a computer assisted proof in dimensions N = 2 , 3 , 4 . We propose in particular a rigorous mathematical frame to reduce the check of this type of coercivity property to accessible and robust numerical results.

[1]  Catherine Sulem,et al.  The nonlinear Schrödinger equation , 2012 .

[2]  G. Perelman On the Formation of Singularities in Solutions of the Critical Nonlinear Schrödinger Equation , 2001 .

[3]  Michael I. Weinstein,et al.  Modulational Stability of Ground States of Nonlinear Schrödinger Equations , 1985 .

[4]  Jean Bourgain,et al.  Construction of blowup solutions for the nonlinear Schr ? odinger equation with critical nonlineari , 1997 .

[5]  Frank Merle,et al.  Profiles and Quantization of the Blow Up Mass for Critical Nonlinear Schrödinger Equation , 2005 .

[6]  Mark S. C. Reed,et al.  Method of Modern Mathematical Physics , 1972 .

[7]  F. Merle,et al.  Determination of blow-up solutions with minimal mass for nonlinear Schrödinger equations with critical power , 1993 .

[8]  J. Craggs Applied Mathematical Sciences , 1973 .

[9]  Papanicolaou,et al.  Rate of blowup for solutions of the nonlinear Schrödinger equation at critical dimension. , 1988, Physical review. A, General physics.

[10]  G. Perelman On the blow up phenomenon for the critical nonlinear Schrödinger equation in 1D , 2000 .

[11]  Dmitry E. Pelinovsky,et al.  Radiative effects to the adiabatic dynamics of envelope-wave solitons , 1998 .

[12]  Pierre-Louis Lions,et al.  Nonlinear scalar field equations, I existence of a ground state , 1983 .

[13]  G. Papanicolaou,et al.  The Focusing Singularity of the Nonlinear Schrödinger Equation , 1987 .

[14]  Paul H. Rabinowitz,et al.  On a class of nonlinear Schrödinger equations , 1992 .

[15]  B. Gidas,et al.  Symmetry and related properties via the maximum principle , 1979 .

[16]  J. Ginibre,et al.  On a class of nonlinear Schrödinger equations. I. The Cauchy problem, general case , 1979 .

[17]  Luis Seco,et al.  Computer Assisted Lower Bounds for Atomic Energies , 1991 .

[18]  Alan C. Newell,et al.  Optical turbulence: weak turbulence, condensates and collapsing filaments in the nonlinear Schro¨dinger equation , 1992 .

[19]  R. Llave Computer Assisted Proofs of Stability of Matter , 1991 .

[20]  M. Kwong Uniqueness of positive solutions of Δu−u+up=0 in Rn , 1989 .

[21]  F. Merle,et al.  On Nonexistence of type II blowup for a supercritical nonlinear heat equation , 2004 .

[22]  M. Weinstein Nonlinear Schrödinger equations and sharp interpolation estimates , 1983 .

[23]  Frank Merle,et al.  On universality of blow-up profile for L2 critical nonlinear Schrödinger equation , 2004 .

[24]  Frank Merle,et al.  Sharp upper bound on the blow-up rate for the critical nonlinear Schrödinger equation , 2003 .

[25]  V. Zakharov,et al.  Exact Theory of Two-dimensional Self-focusing and One-dimensional Self-modulation of Waves in Nonlinear Media , 1970 .

[26]  F. Merle,et al.  ON A SHARP LOWER BOUND ON THE BLOW-UP RATE FOR THE L CRITICAL NONLINEAR SCHRÖDINGER EQUATION , 2005 .

[27]  F. Merle,et al.  ON ONE BLOW UP POINT SOLUTIONS TO THE CRITICAL NONLINEAR SCHRÖDINGER EQUATION , 2005 .

[28]  Pierre Raphael Stability of the log-log bound for blow up solutions to the critical non linear Schrödinger equation , 2005 .

[29]  Pierre Raphaël,et al.  The blow-up dynamic and upper bound on the blow-up rate for critical nonlinear Schrödinger equation , 2005 .

[30]  C. Sulem,et al.  The nonlinear Schrödinger equation : self-focusing and wave collapse , 2004 .

[31]  Pierre Raphaël,et al.  Stability of the log-log bound for blow up solutions to the critical non linear Schrödinger equation , 2005 .

[32]  W. Rother,et al.  Nonlinear scalar field equations , 1992, Differential and Integral Equations.

[33]  Gadi Fibich,et al.  Self-Focusing in the Perturbed and Unperturbed Nonlinear Schrödinger Equation in Critical Dimension , 1999, SIAM J. Appl. Math..