Plasma-assisted InP-to-Si low temperature wafer bonding

The applicability of wafer bonding as a tool to integrate the dissimilar material system InP-to-Si is presented and discussed with recent examples of InP-based optoelectronic devices on Si. From there, the lowering of annealing temperature in wafer bonding by plasma-assisted bonding is the essence of this review paper. Lower annealing temperatures would further launch wafer bonding as a competitive technology and enable a wider use of it. Oxygen plasma treatment has been proven to be very feasible in achieving a strong bonding already at low temperatures. It was also seen that in our experimental setups the results depended on what plasma parameters that were used, since different plasma parameters create different surface conditions.

[1]  M. K. Lee,et al.  Indium phosphide on silicon heteroepitaxy: Lattice deformation and strain relaxation , 1990 .

[2]  Stefan Bengtsson,et al.  Formation of Silicon Structures by Plasma‐Activated Wafer Bonding , 2000 .

[3]  K. Wise,et al.  Low-temperature silicon wafer-to-wafer bonding using gold at eutectic temperature , 1994 .

[4]  S. Denbaars,et al.  Low-temperature Pd bonding of III-V semiconductors , 1995 .

[5]  Gilles Patriarche,et al.  Structure of the GaAs/InP interface obtained by direct wafer bonding optimised for surface emitting optical devices , 1997 .

[6]  U. Gösele,et al.  SemiConductor Wafer Bonding: Science and Technology , 1998 .

[7]  D. E. Mull,et al.  Wafer fusion: A novel technique for optoelectronic device fabrication and monolithic integration , 1990 .

[8]  L. Tenerz,et al.  Silicon microcavities fabricated with a new technique , 1986 .

[9]  Y. Liu,et al.  Growth of ultrathin SiO2 on Si by surface irradiation with an O2+Ar electron cyclotron resonance microwave plasma at low temperatures , 1999 .

[10]  U. Gosele,et al.  Bubble-Free Silicon Wafer Bonding in a Non-Cleanroom Environment , 1988 .

[11]  W. Benecke,et al.  Low-temperature silicon wafer bonding , 1992 .

[12]  Ryutaro Maeda,et al.  Surface activated bonding of silicon wafers at room temperature , 1996 .

[13]  M. Bruel Silicon on insulator material technology , 1995 .

[14]  D. L. Mathine,et al.  The integration of III-V optoelectronics with silicon circuitry , 1997 .

[15]  Regrowth of GaAs quantum wells on GaAs liftoff films 'van der Waals bonded' to silicon substrates , 1989 .

[16]  G. Wegner,et al.  Room temperature silicon wafer bonding with ultra‐thin polymer films , 1997 .

[17]  M. Kitajima,et al.  Surface stress in thin oxide layer made by plasma oxidation with applying positive bias , 2000 .

[18]  S. Adachi,et al.  Chemically cleaned InP(100) surfaces in aqueous HF solutions , 2000 .

[19]  Nakamura,et al.  Oxidation rate and surface-potential variations of silicon during plasma oxidation. , 1996, Physical review. B, Condensed matter.

[20]  G. Kissinger,et al.  Void-free silicon-wafer-bond strengthening in the 200–400 °C range , 1993 .

[21]  Manfred Reiche,et al.  Hydrophobic silicon wafer bonding , 1994 .

[22]  Donato Pasquariello,et al.  Plasma Assisted Low Temperature Semiconductor Wafer Bonding , 2001 .

[23]  M. A. Koza,et al.  Bonding by atomic rearrangement of InP/InGaAsP 1.5 μm wavelength lasers on GaAs substrates , 1991 .

[24]  John E. Bowers,et al.  High gain-bandwidth-product silicon heterointerface photodetector , 1997 .

[25]  U. Gösele,et al.  Low Vacuum Wafer Bonding , 1999 .

[26]  John E. Bowers,et al.  Silicon heterointerface photodetector , 1996 .

[27]  R. Chang,et al.  Hydrogen plasma etching of semiconductors and their oxides , 1982 .

[28]  J. Bowers,et al.  Wafer fusion: materials issues and device results , 1997 .

[29]  S. Lau,et al.  Mechanically induced Si layer transfer in hydrogen-implanted Si wafers , 2000 .

[30]  Rajaram Bhat,et al.  Semiconductor lasers on Si substrates using the technology of bonding by atomic rearrangement , 1993 .

[31]  Lord Rayleigh A Study of Glass Surfaces in Optical Contact , 1936 .

[32]  Aaron R. Hawkins,et al.  Characterization of wafer bonded photodetectors fabricated using various annealing temperatures and ambients , 1997 .

[33]  T. Suga,et al.  Bonding of p-Si/n-InP wafers through surface activated bonding method at room temperature , 2001, Conference Proceedings. 2001 International Conference on Indium Phosphide and Related Materials. 13th IPRM (Cat. No.01CH37198).

[34]  Hadis Morkoç,et al.  InP/InGaAs resonant cavity enhanced photodetector and light emitting diode with external mirrors on Si , 1994 .

[35]  K. Hjort,et al.  Evaluation of InP-to-silicon heterobonding , 2001 .

[36]  J. Gardeniers,et al.  The effect of surface roughness on direct wafer bonding , 1999 .

[37]  Bernard Aspar,et al.  Smart-Cut® process using metallic bonding: Application to transfer of Si, GaAs, InP thin films , 1999 .

[38]  K. Shimomura,et al.  High responsivity in integrated optically controlled metal-oxide semiconductor field-effect transistor using directly bonded SiO2-InP , 1997, IEEE Photonics Technology Letters.

[39]  W. Maszara,et al.  Role of surface morphology in wafer bonding , 1991 .

[40]  E. Yablonovitch,et al.  Van der Waals bonding of GaAs epitaxial liftoff films onto arbitrary substrates , 1990 .

[41]  M. Yamaguchi,et al.  Heteroepitaxial growth and characterization of InP on Si substrates , 1990 .

[42]  M. Umeno,et al.  Effect of InGaAs/InP strained layer superlattice in InP-on-Si , 1991 .

[43]  T. Mii,et al.  Bubble-Free Wafer Bonding of GaAs and InP on Silicon in a Microcleanroom , 1989 .

[44]  David T. Crouse,et al.  Electrical properties of wafer-bonded GaAs/Si heterojunctions , 1998 .

[45]  S. Stiffler,et al.  Silicon-on-insulator (SOI) by bonding and ETCH-back , 1985, 1985 International Electron Devices Meeting.

[46]  M. Shimbo,et al.  Silicon‐to‐silicon direct bonding method , 1986 .

[47]  M. Reiche,et al.  Modification of Si(100)-Surfaces by SF6 Plasma Etching — Application to Wafer Direct Bonding , 2000 .

[48]  T. Kamijoh,et al.  Room-temperature CW operation of InGaAsP lasers on Si fabricated by wafer bonding , 1996, IEEE Photonics Technology Letters.

[49]  H. Sasaki,et al.  Wafer bonding technology for optoelectronic integrated devices , 1999 .

[50]  S. Sugou,et al.  Low-threshold pulsed operation of long-wavelength lasers on Si fabricated by direct bonding , 1995 .

[51]  K. Hjort,et al.  Surface energy as a function of self-bias voltage in oxygen plasma wafer bonding , 2000 .

[52]  F. Widdershoven,et al.  Boron contamination and antimony segregation at the interface of directly bonded silicon wafers , 1990 .

[53]  T. Kamijoh,et al.  1.3-/spl mu/m InP-InGaAsP lasers fabricated on Si substrates by wafer bonding , 1997 .

[54]  John E. Bowers,et al.  20 GHZ HIGH PERFORMANCE PLANAR SI/INGAAS P-I-N PHOTODETECTOR , 1997 .

[55]  Y. Bäcklund,et al.  A suggested mechanism for silicon direct bonding from studying hydrophilic and hydrophobic surfaces , 1992 .

[56]  B. Schröder,et al.  Influence of oxygen incorporation on the properties of magnetron sputtered hydrogenated amorphous germanium films , 1993 .

[57]  G. A. Antypas,et al.  Glass-sealed GaAs-AlGaAs transmission photocathode , 1975 .

[58]  M. Bruel,et al.  Smart-Cut: A New Silicon On Insulator Material Technology Based on Hydrogen Implantation and Wafer Bonding*1 , 1997 .

[59]  Tadatomo Suga,et al.  Room temperature GaAsSi and InPSi wafer direct bonding by the surface activated bonding method , 1997 .

[60]  D. V. Lang,et al.  Ultralow-dark-current wafer-bonded Si/InGaAs photodetectors , 1999 .

[61]  J. R. Mallon,et al.  Silicon fusion bonding for pressure sensors , 1988, IEEE Technical Digest on Solid-State Sensor and Actuator Workshop.

[62]  Kurt Scheerschmidt,et al.  Self‐propagating room‐temperature silicon wafer bonding in ultrahigh vacuum , 1995 .

[63]  R. Bhat,et al.  High‐performance InGaAs photodetectors on Si and GaAs substrates , 1995 .

[64]  Mattias Hammar,et al.  Defects, structure, and chemistry of InP-GaAs interfaces obtained by wafer bonding , 2000 .

[65]  M. Reiche,et al.  Time‐Dependent Surface Properties and Wafer Bonding of O 2 ‐ Plasma ‐ Treated Silicon (100) Surfaces , 2000 .

[66]  William P. Eaton,et al.  Silicon wafer‐to‐wafer bonding at T<200 °C with polymethylmethacrylate , 1994 .

[67]  B. Roberds,et al.  Chemical Free Room Temperature Wafer To Wafer Direct Bonding , 1995 .

[68]  T. Kamijoh,et al.  Room-temperature photo-pumped operation of 1.58-μm vertical-cavity lasers fabricated on Si substrates using wafer bonding , 1996, IEEE Photonics Technology Letters.

[69]  K. Hjort,et al.  Crystalline Defects in InP-to-Silicon Direct Wafer Bonding , 2001 .

[70]  L. Zazzera,et al.  XPS and SIMS Study of Anhydrous HF and UV/Ozone‐Modified Silicon (100) Surfaces , 1989 .

[71]  Y. Kim,et al.  Properties of center and edge δ‐doped GaAs‐AlGaAs quantum wells grown by metalorganic chemical vapor deposition , 1993 .

[72]  S. Hopfe,et al.  Layer splitting process in hydrogen-implanted Si, Ge, SiC, and diamond substrates , 1997 .

[73]  E. Yablonovitch,et al.  Extreme selectivity in the lift‐off of epitaxial GaAs films , 1987 .

[74]  Bernhard Jakoby,et al.  Wafer-to-wafer fusion bonding of oxidized silicon to silicon at low temperatures , 1998 .

[75]  M. Reiche,et al.  Silicon wafer bonding via designed monolayers , 1995 .

[76]  K. Hjort,et al.  Oxidation and Induced Damage in Oxygen Plasma In Situ Wafer Bonding , 2000 .

[77]  Q.-Y. Tong,et al.  Low temperature InP layer transfer , 1999 .

[78]  H. Massoud,et al.  Causes and Prevention of Temperature-Dependent Bubbles in Silicon Wafer Bonding , 1991 .

[79]  Bernard Aspar,et al.  InP microdisk lasers on silicon wafer: CW room temperature operation at 1.6 [micro sign]m , 2001 .