MR-Encephalography: Fast multi-channel monitoring of brain physiology with magnetic resonance

[1]  S. Ogawa,et al.  Oxygenation‐sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields , 1990, Magnetic resonance in medicine.

[2]  P. Roemer,et al.  The NMR phased array , 1990, Magnetic resonance in medicine.

[3]  R. Turner,et al.  Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[4]  J. Hennig,et al.  Detection of brain activation using oxygenation sensitive functional spectroscopy , 1994, Magnetic resonance in medicine.

[5]  J. Poorter,et al.  Noninvasive MRI Thermometry with the Proton Resonance Frequency (PRF) Method: In Vivo Results in Human Muscle , 1995, Magnetic resonance in medicine.

[6]  M. Lowe,et al.  Spatially filtering functional magnetic resonance imaging data , 1997, Magnetic resonance in medicine.

[7]  B. Biswal,et al.  Simultaneous assessment of flow and BOLD signals in resting‐state functional connectivity maps , 1997, NMR in biomedicine.

[8]  A. Anderson,et al.  A functional magnetic resonance imaging study of tic suppression in Tourette syndrome. , 1998, Archives of general psychiatry.

[9]  P. Boesiger,et al.  SENSE: Sensitivity encoding for fast MRI , 1999, Magnetic resonance in medicine.

[10]  G H Glover,et al.  Image‐based method for retrospective correction of physiological motion effects in fMRI: RETROICOR , 2000, Magnetic resonance in medicine.

[11]  K. Scheffler,et al.  Fast 31P chemical shift imaging using SSFP methods , 2002, Magnetic resonance in medicine.

[12]  Jeffrey A. Fessler,et al.  Iterative tomographic image reconstruction using Fourier-based forward and back-projectors , 2004, IEEE Transactions on Medical Imaging.

[13]  M. Kawato,et al.  Attentional shifts towards an expected visual target alter the level of alpha-band oscillatory activity in the human calcarine cortex. , 2005, Brain research. Cognitive brain research.

[14]  M. McDougall,et al.  64‐channel array coil for single echo acquisition magnetic resonance imaging , 2005, Magnetic resonance in medicine.

[15]  J. Bodurka,et al.  Direct detection of neuronal activity with MRI: Fantasy, possibility, or reality? , 2005 .

[16]  L. Busse,et al.  The spread of attention across modalities and space in a multisensory object. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[17]  D. Somers,et al.  Processing Efficiency of Divided Spatial Attention Mechanisms in Human Visual Cortex , 2005, The Journal of Neuroscience.

[18]  Emery N. Brown,et al.  Nonstationary noise estimation in functional MRI , 2005, NeuroImage.

[19]  P. Boesiger,et al.  Minimum‐norm reconstruction for sensitivity‐encoded magnetic resonance spectroscopic imaging , 2006, Magnetic resonance in medicine.

[20]  J Velikina,et al.  Highly constrained backprojection for time‐resolved MRI , 2006, Magnetic resonance in medicine.

[21]  Lee Friedman,et al.  Report on a multicenter fMRI quality assurance protocol , 2006, Journal of magnetic resonance imaging : JMRI.

[22]  W. Heindel,et al.  fMRI studies of sensitivity and habituation effects within the auditory cortex at 1.5 T and 3 T , 2006, Journal of magnetic resonance imaging : JMRI.

[23]  G. Glover,et al.  Partial‐k‐space acquisition method for improved SNR efficiency and temporal resolution in 3D fMRI , 2006, Magnetic resonance in medicine.

[24]  Matti S Hämäläinen,et al.  Dynamic magnetic resonance inverse imaging of human brain function , 2006, Magnetic resonance in medicine.

[25]  M. Sams,et al.  Attention to visual speech gestures enhances hemodynamic activity in the left planum temporale , 2006, Human brain mapping.