PROJECTIVE REEDS-SHEPP CAR ON S 2 WITH QUADRATIC COST
暂无分享,去创建一个
[1] M. Chyba,et al. Singular Trajectories and Their Role in Control Theory , 2003, IEEE Transactions on Automatic Control.
[2] David L. Elliott,et al. Geometric control theory , 2000, IEEE Trans. Autom. Control..
[3] M. Gromov. Carnot-Carathéodory spaces seen from within , 1996 .
[4] E. Blum,et al. The Mathematical Theory of Optimal Processes. , 1963 .
[5] L. Shepp,et al. OPTIMAL PATHS FOR A CAR THAT GOES BOTH FORWARDS AND BACKWARDS , 1990 .
[6] A. Bellaïche. The tangent space in sub-riemannian geometry , 1994 .
[7] J. Petitot,et al. Vers une neurogéométrie. Fibrations corticales, structures de contact et contours subjectifs modaux , 1999 .
[8] B. Piccoli,et al. Optimal Syntheses for Control Systems on 2-D Manifolds , 2004 .
[9] Victor M. Becerra,et al. Optimal control , 2008, Scholarpedia.
[10] Frank L. Lewis,et al. Optimal Control , 1986 .
[11] Y. Sachkov. Maxwell strata in the Euler elastic problem , 2008 .
[12] M. L. Chambers. The Mathematical Theory of Optimal Processes , 1965 .
[13] A. Agrachev,et al. Control Theory from the Geometric Viewpoint , 2004 .
[14] V. Jurdjevic,et al. Hamiltonian point of view of non-Euclidean geometry and elliptic functions , 2001, Syst. Control. Lett..
[15] L. S. Pontryagin,et al. Mathematical Theory of Optimal Processes , 1962 .
[16] D. Rolfsen. Knots and Links , 2003 .
[17] Yu. L. Sachkov,et al. Maxwell strata in Euler's elastic problem , 2007, 0705.0614.
[18] L. Bittner. L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, E. F. Mishechenko, The Mathematical Theory of Optimal Processes. VIII + 360 S. New York/London 1962. John Wiley & Sons. Preis 90/– , 1963 .
[19] Giovanna Citti,et al. A Cortical Based Model of Perceptual Completion in the Roto-Translation Space , 2006, Journal of Mathematical Imaging and Vision.
[20] Richard Bellman,et al. Introduction to the mathematical theory of control processes , 1967 .
[21] M. Spivak. A comprehensive introduction to differential geometry , 1979 .
[22] D. Wishart. Introduction to the Mathematical Theory of Control Processes. Volume 1—Linear Equations and Quadratic Criteria , 1969 .
[23] A. Agrachev. Exponential mappings for contact sub-Riemannian structures , 1996 .
[24] Andrei A. Agrachev,et al. Methods of Control Theory in Nonholonomic Geometry , 1995 .
[25] E. Trélat,et al. Genericity results for singular curves , 2006 .
[26] Roger W. Brockett. Explicitly solvable control problems with nonholonomic constraints , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).
[27] Y. Chitour,et al. Dubins’ problem on surfaces. I. nonnegative curvature , 2005 .
[28] Francesco Rossi,et al. Invariant Carnot--Caratheodory Metrics on S3, SO(3), SL(2), and Lens Spaces , 2007, SIAM J. Control. Optim..
[29] V. Jurdjevic. Optimal control, geometry, and mechanics , 1998 .
[30] Jean-Paul Gauthier,et al. On the K + P Problem for a Three-Level Quantum System: Optimality Implies Resonance , 2002 .
[31] A. Agrachev,et al. A. Agrachev COMPACTNESS FOR SUB-RIEMANNIAN LENGTH-MINIMIZERS AND SUBANALYTICITY , 1999 .