PROJECTIVE REEDS-SHEPP CAR ON S 2 WITH QUADRATIC COST

Fix two points x, ¯ ∈ S 2 and two directions (without orientation) η,¯ η of the velocities in these points. In this paper we are interested to the problem of minimizing the cost

[1]  M. Chyba,et al.  Singular Trajectories and Their Role in Control Theory , 2003, IEEE Transactions on Automatic Control.

[2]  David L. Elliott,et al.  Geometric control theory , 2000, IEEE Trans. Autom. Control..

[3]  M. Gromov Carnot-Carathéodory spaces seen from within , 1996 .

[4]  E. Blum,et al.  The Mathematical Theory of Optimal Processes. , 1963 .

[5]  L. Shepp,et al.  OPTIMAL PATHS FOR A CAR THAT GOES BOTH FORWARDS AND BACKWARDS , 1990 .

[6]  A. Bellaïche The tangent space in sub-riemannian geometry , 1994 .

[7]  J. Petitot,et al.  Vers une neurogéométrie. Fibrations corticales, structures de contact et contours subjectifs modaux , 1999 .

[8]  B. Piccoli,et al.  Optimal Syntheses for Control Systems on 2-D Manifolds , 2004 .

[9]  Victor M. Becerra,et al.  Optimal control , 2008, Scholarpedia.

[10]  Frank L. Lewis,et al.  Optimal Control , 1986 .

[11]  Y. Sachkov Maxwell strata in the Euler elastic problem , 2008 .

[12]  M. L. Chambers The Mathematical Theory of Optimal Processes , 1965 .

[13]  A. Agrachev,et al.  Control Theory from the Geometric Viewpoint , 2004 .

[14]  V. Jurdjevic,et al.  Hamiltonian point of view of non-Euclidean geometry and elliptic functions , 2001, Syst. Control. Lett..

[15]  L. S. Pontryagin,et al.  Mathematical Theory of Optimal Processes , 1962 .

[16]  D. Rolfsen Knots and Links , 2003 .

[17]  Yu. L. Sachkov,et al.  Maxwell strata in Euler's elastic problem , 2007, 0705.0614.

[18]  L. Bittner L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, E. F. Mishechenko, The Mathematical Theory of Optimal Processes. VIII + 360 S. New York/London 1962. John Wiley & Sons. Preis 90/– , 1963 .

[19]  Giovanna Citti,et al.  A Cortical Based Model of Perceptual Completion in the Roto-Translation Space , 2006, Journal of Mathematical Imaging and Vision.

[20]  Richard Bellman,et al.  Introduction to the mathematical theory of control processes , 1967 .

[21]  M. Spivak A comprehensive introduction to differential geometry , 1979 .

[22]  D. Wishart Introduction to the Mathematical Theory of Control Processes. Volume 1—Linear Equations and Quadratic Criteria , 1969 .

[23]  A. Agrachev Exponential mappings for contact sub-Riemannian structures , 1996 .

[24]  Andrei A. Agrachev,et al.  Methods of Control Theory in Nonholonomic Geometry , 1995 .

[25]  E. Trélat,et al.  Genericity results for singular curves , 2006 .

[26]  Roger W. Brockett Explicitly solvable control problems with nonholonomic constraints , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[27]  Y. Chitour,et al.  Dubins’ problem on surfaces. I. nonnegative curvature , 2005 .

[28]  Francesco Rossi,et al.  Invariant Carnot--Caratheodory Metrics on S3, SO(3), SL(2), and Lens Spaces , 2007, SIAM J. Control. Optim..

[29]  V. Jurdjevic Optimal control, geometry, and mechanics , 1998 .

[30]  Jean-Paul Gauthier,et al.  On the K + P Problem for a Three-Level Quantum System: Optimality Implies Resonance , 2002 .

[31]  A. Agrachev,et al.  A. Agrachev COMPACTNESS FOR SUB-RIEMANNIAN LENGTH-MINIMIZERS AND SUBANALYTICITY , 1999 .