Effect of surface field on the morphology of a symmetric diblock copolymer under cylindrical confinement.

We have used lattice Monte Carlo simulations to investigate the molecular assembly of symmetric diblock copolymer melts within cylindrical nanochannels. We studied the effect that the surface field has on the copolymer morphology in three cylinders having different diameters. Upon varying the strength of the surface field, we observed a variety of morphologies, including stacked-disk, single-helix, catenoid-cylinder, gyroidal, stacked-circle, and concentric cylindrical barrel structures. The results of these simulations should be helpful when designing polymeric nanomaterials confined in cylindrical nanochannels.

[1]  S. Ludwigs,et al.  Phase Behavior of ABC Triblock Terpolymers in Thin Films: Mesoscale Simulations , 2005 .

[2]  Yiming Sun,et al.  Diameter‐Dependence of the Morphology of PS‐b‐PMMA Nanorods Confined Within Ordered Porous Alumina Templates , 2005 .

[3]  T. Russell,et al.  Block copolymers under cylindrical confinement , 2004 .

[4]  K. Binder,et al.  Monte Carlo simulation of block copolymers , 2000 .

[5]  Gallagher,et al.  Observed frustration in confined block copolymers. , 1994, Physical review letters.

[6]  G. Fredrickson,et al.  Morphologies of ABC triblock copolymer thin films , 2002 .

[7]  C. Stafford,et al.  Combinatorial Mapping of the Phase Behavior of ABC Triblock Terpolymers in Thin Films: Experiments , 2005 .

[8]  G. Sevink,et al.  Surface-Induced Transitions in Thin Films of Asymmetric Diblock Copolymers , 2001 .

[9]  G. Sevink,et al.  Morphology of symmetric block copolymer in a cylindrical pore , 2001 .

[10]  Kurt Binder,et al.  Symmetric diblock copolymers in thin films. I. Phase stability in self-consistent field calculations and Monte Carlo simulations , 1999 .

[11]  T. Russell,et al.  Curving and Frustrating Flatland , 2004, Science.

[12]  Haojun Liang,et al.  Self-assembly of the symmetric diblock copolymer in a confined state: Monte Carlo simulation , 2001 .

[13]  G. Sevink,et al.  Asymmetric block copolymers confined in a thin film , 2000 .

[14]  L. Leibler Theory of Microphase Separation in Block Copolymers , 1980 .

[15]  Yiying Wu,et al.  Composite mesostructures by nano-confinement , 2004, Nature materials.

[16]  G. Pereira,et al.  Towards nano-scale devices via self-assembly , 2004 .

[17]  F. Bates,et al.  Polymer-Polymer Phase Behavior , 1991, Science.

[18]  E. Thomas,et al.  Lamellar diblock copolymer grain boundary morphology. 2. Scherk twist boundary energy calculations , 1994 .

[19]  Taehyung Kim,et al.  From cylinders to helices upon confinement , 2005 .

[20]  A. Knoll,et al.  Phase behavior in thin films of cylinder-forming block copolymers. , 2002, Physical review letters.

[21]  G. Fredrickson,et al.  Block Copolymers—Designer Soft Materials , 1999 .

[22]  M. Doi,et al.  Phase Separated Structures in a Binary Blend of Diblock Copolymers under an Extensional Force Field —Helical Domain Structure— , 2004 .

[23]  Juan J. de Pablo,et al.  Monte Carlo Simulations of Asymmetric Diblock Copolymer Thin Films Confined between Two Homogeneous Surfaces , 2001 .

[24]  V. Abetz,et al.  Thin Film Morphologies of ABC Triblock Copolymers Prepared from Solution , 2002 .

[25]  V. Altstädt,et al.  Morphological Studies of Poly(styrene)-block-poly(ethylene-co-butylene)-block-poly(methyl methacrylate) in the Composition Region of the ``Knitting Pattern'' Morphology§ , 2001 .

[26]  S. Ludwigs,et al.  Self-assembly of functional nanostructures from ABC triblock copolymers , 2003, Nature materials.

[27]  Schick,et al.  Stable and unstable phases of a diblock copolymer melt. , 1994, Physical review letters.

[28]  Gallagher,et al.  Observed surface energy effects in confined diblock copolymers. , 1996, Physical review letters.

[29]  D. Agard,et al.  Phase Behavior of Ordered Diblock Copolymer Blends: Effect of Compositional Heterogeneity , 1996 .