Upstream/downstream food quality differences in a Caribbean Island River

[1]  J. Wehr,et al.  Complementary information from fatty acid and nutrient stoichiometry data improve stream food web analyses , 2019, Hydrobiologia.

[2]  N. Améziane,et al.  Detection of full and limited amphidromous migratory dynamics of fish in Caribbean rivers , 2019, Ecology of Freshwater Fish.

[3]  R. Lagarde Phénologies, mécanismes et perturbations anthropiques des dynamiques de migration dulçaquicoles des espèces amphidromes : cas des Sicydiinae de La Réunion , 2018 .

[4]  S. Bunn,et al.  Feeding strategies for the acquisition of high‐quality food sources in stream macroinvertebrates: Collecting, integrating, and mixed feeding , 2018, Limnology and oceanography.

[5]  P. Lopez,et al.  Selectivity on epilithic diatom consumption for two tropical sympatric gobies: Sicydium punctatum Perugia, 1986 and Sicydium plumieri (Bloch, 1786) , 2018 .

[6]  F. Guérold,et al.  Minor food sources can play a major role in secondary production in detritus‐based ecosystems , 2017 .

[7]  A. W. Galloway,et al.  How important are terrestrial organic carbon inputs for secondary production in freshwater ecosystems , 2017 .

[8]  S. Bunn,et al.  High-quality algae attached to leaf litter boost invertebrate shredder growth , 2016, Freshwater Science.

[9]  P. Keith,et al.  Larval traits of the Caribbean amphidromous goby Sicydium punctatum (Gobioidei: Sicydiinae) in Guadeloupe , 2016 .

[10]  J. Martín,et al.  Do Sicydium punctatum adults move in the Caribbean estuaries? New insight from Strontium isotopes , 2015 .

[11]  A. Bec,et al.  Temporal changes in essential fatty acid availability in different food sources in the littoral macrophyte zone , 2014, Hydrobiologia.

[12]  J. Labonne,et al.  Habitat selection in amphidromous Gobiidae of Reunion Island: Sicyopterus lagocephalus (Pallas, 1770) and Cotylopus acutipinnis (Guichenot, 1863) , 2013, Environmental Biology of Fishes.

[13]  J. Bauer,et al.  Carbon isotope biogeochemistry of tropical small mountainous river, estuarine, and coastal systems of Puerto Rico , 2013, Biogeochemistry.

[14]  P. Keith,et al.  Tropical Freshwater Gobies: Amphidromy as a Life Cycle , 2011 .

[15]  N. Vachiéry,et al.  Epilithic biofilm as a key factor for small‐scale river fisheries on Caribbean islands , 2011 .

[16]  M. Perga,et al.  Fatty acid transfer in the food web of a coastal Mediterranean lagoon: Evidence for high arachidonic acid retention in fish , 2011 .

[17]  W. Verstraete,et al.  The effect of different carbon sources on the nutritional value of bioflocs, a feed for Macrobrachium rosenbergii postlarvae , 2010 .

[18]  P. Legendre,et al.  Shifts between biotic and physical driving forces of species organization under natural disturbance regimes , 2009 .

[19]  C. Bouchon,et al.  Trophic relationships in a tropical stream food web assessed by stable isotope analysis , 2009 .

[20]  M. T. Arts,et al.  Lipids in aquatic ecosystems , 2009 .

[21]  S. Das,et al.  Growth, survival and fatty acid composition of Macrobrachium rosenbergii (de Man, 1879) post larvae fed HUFA-enriched Moina micrura , 2007 .

[22]  J. Wehr,et al.  Trophic relations in a stream food web: importance of fatty acids for macroinvertebrate consumers , 2007, Journal of the North American Benthological Society.

[23]  R. McDowall On amphidromy, a distinct form of diadromy in aquatic organisms , 2007 .

[24]  S. Bunn,et al.  Stable isotope analysis indicates microalgae as the predominant food source of fauna in a coastal forest stream, south‐east Brazil , 2006 .

[25]  K. Walker,et al.  Biofilms as food for decapods (Atyidae, Palaemonidae) in the River Murray, South Australia , 2000, Hydrobiologia.

[26]  P. Keith Biology and ecology of amphidromous Gobiidae of the Indo‐Pacific and the Caribbean regions , 2003 .

[27]  J. March,et al.  Food Web Structure and Basal Resource Utilization along a Tropical Island Stream Continuum, Puerto Rico , 2003 .

[28]  T. Aide,et al.  RIPARIAN VEGETATION AND STREAM CONDITION IN A TROPICAL AGRICULTURE–SECONDARY FOREST MOSAIC , 2003 .

[29]  E. A. Greathouse,et al.  Ecosystem-Level Consequences of Migratory Faunal Depletion Caused by Dams , 2003 .

[30]  Michael A. St. John,et al.  Fatty acid trophic markers in the pelagic marine environment. , 2003, Advances in marine biology.

[31]  J. Watts,et al.  Polyunsaturated fatty acid synthesis: what will they think of next? , 2002, Trends in biochemical sciences.

[32]  S. Dolédec,et al.  Distribution of migratory fishes and shrimps along multivariate gradients in tropical island streams , 2001 .

[33]  P. Sorgeloos,et al.  Variations in lipid classes and fatty acid content in tissues of wild Macrobrachium rosenbergii (de Man) females during maturation , 2001 .

[34]  C. Goldman,et al.  A highly unsaturated fatty acid predicts carbon transfer between primary producers and consumers , 2000, Nature.

[35]  P. Sorgeloos,et al.  Performance of Macrobrachium rosenbergii broodstock fed diets with different fatty acid composition , 1999 .

[36]  J. G. Bell,et al.  Recent developments in the essential fatty acid nutrition of fish , 1999 .

[37]  Margaret A. Palmer,et al.  The Role of Benthic Invertebrate Species in Freshwater Ecosystems: Zoobenthic species influence energy flows and nutrient cycling , 1999 .

[38]  D. Dudgeon Tropical Asian Streams: Zoobenthos, Ecology and Conservation , 1999 .

[39]  P. Weston,et al.  Relative prawn production and benthic macroinvertebrate densities in unfed, organically fertilized, and fed pond systems , 1997 .

[40]  C. Pringle,et al.  Quantitative Effects of Atyid Shrimp (Decapoda: Atyidae) on the Depositional Environment in a Tropical Stream: Use of Electricity for Experimental Exclusion , 1994 .

[41]  L. D’Abramo,et al.  Polyunsaturated fatty acid nutrition in juvenile freshwater prawn Macrobrachium rosenbergii , 1993 .