Influence of intravenous ferric carboxymaltose on non-invasive parameters of left ventricular myocardial work in patients with heart failure with reduced ejection fraction
暂无分享,去创建一个
[1] R. López-Vilella,et al. Impact of intravenous ferric carboxymaltose on heart failure with preserved and reduced ejection fraction , 2021, ESC heart failure.
[2] M. Glikson,et al. The '10 commandments' for the 2021 ESC guidelines on cardiac pacing and cardiac resynchronization therapy. , 2021, European heart journal.
[3] J. McMurray,et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. , 2021, European heart journal.
[4] F. Knebel,et al. Myocardial Work Assessment for the Prediction of Prognosis in Advanced Heart Failure , 2021, Frontiers in Cardiovascular Medicine.
[5] Российское кардиологическое общество. Хроническая сердечная недостаточность. Клинические рекомендации 2020 , 2020 .
[6] G. La Canna,et al. New and old echographic parameters in heart failure , 2020, European heart journal supplements : journal of the European Society of Cardiology.
[7] M. N. Alekhin,et al. Неинвазивная оценка показателей миокардиальной работы левого желудочка у здоровых лиц при эхокардиографии , 2020 .
[8] P. Chu,et al. Incremental prognostic value of global myocardial work over ejection fraction and global longitudinal strain in patients with heart failure and reduced ejection fraction. , 2020, European heart journal cardiovascular Imaging.
[9] Daniel S. Berman,et al. Variability in Ejection Fraction Measured By Echocardiography, Gated Single-Photon Emission Computed Tomography, and Cardiac Magnetic Resonance in Patients With Coronary Artery Disease and Left Ventricular Dysfunction , 2018, JAMA network open.
[10] B. Giepmans,et al. Iron deficiency impairs contractility of human cardiomyocytes through decreased mitochondrial function , 2018, European journal of heart failure.
[11] Denisa Muraru,et al. Three-dimensional speckle-tracking echocardiography: benefits and limitations of integrating myocardial mechanics with three-dimensional imaging. , 2018, Cardiovascular diagnosis and therapy.
[12] Marcel L Geleijnse,et al. The Role of Automated 3D Echocardiography for Left Ventricular Ejection Fraction Assessment. , 2017, Cardiac failure review.
[13] James A. White,et al. Clinical feasibility and validation of 3D principal strain analysis from cine MRI: comparison to 2D strain by MRI and 3D speckle tracking echocardiography , 2017, The International Journal of Cardiovascular Imaging.
[14] Morten Eriksen,et al. Assessment of wasted myocardial work: a novel method to quantify energy loss due to uncoordinated left ventricular contractions. , 2013, American journal of physiology. Heart and circulatory physiology.
[15] Thomas H Marwick,et al. Normal ranges of left ventricular strain: a meta-analysis. , 2013, Journal of the American Society of Echocardiography : official publication of the American Society of Echocardiography.
[16] Joseph Kisslo,et al. Variability of global left ventricular deformation analysis using vendor dependent and independent two-dimensional speckle-tracking software in adults. , 2012, Journal of the American Society of Echocardiography : official publication of the American Society of Echocardiography.
[17] Jan Gunnar Fjeld,et al. A novel clinical method for quantification of regional left ventricular pressure–strain loop area: a non-invasive index of myocardial work , 2012, European heart journal.