GPU implementation of RX detection using spectral derivative features

[1]  A. Plaza,et al.  Parallel real-time virtual dimensionality estimation for hyperspectral images , 2018, Journal of Real-Time Image Processing.

[2]  Chiman Kwan,et al.  A Novel Cluster Kernel RX Algorithm for Anomaly and Change Detection Using Hyperspectral Images , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[3]  Lianru Gao,et al.  Embedded GPU implementation of anomaly detection for hyperspectral images , 2015, SPIE Remote Sensing.

[4]  Stephen Marshall,et al.  Hyperspectral imaging for food applications , 2015, 2015 23rd European Signal Processing Conference (EUSIPCO).

[5]  L. Sousa,et al.  Real-time implementation of remotely sensed hyperspectral image unmixing on GPUs , 2015, Journal of Real-Time Image Processing.

[6]  Wei You,et al.  GPU implementation for real-time hyperspectral anomaly detection , 2015, 2015 IEEE International Conference on Digital Signal Processing (DSP).

[7]  Jun Li,et al.  Parallel Implementation of Sparse Representation Classifiers for Hyperspectral Imagery on GPUs , 2015, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[8]  Fang Liu,et al.  Hyperspectral Image Classification by Spatial–Spectral Derivative-Aided Kernel Joint Sparse Representation , 2015, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[9]  Qian Du,et al.  Collaborative Representation for Hyperspectral Anomaly Detection , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[10]  Yasser Maghsoudi,et al.  Beneficiary of high order derivative spectrum in target detection , 2014, 2014 IEEE Geoscience and Remote Sensing Symposium.

[11]  Qian Du,et al.  Hyperspectral image classification based on spectra derivative features and locality preserving analysis , 2014, 2014 IEEE China Summit & International Conference on Signal and Information Processing (ChinaSIP).

[12]  Antonio J. Plaza,et al.  Weighted-RXD and Linear Filter-Based RXD: Improving Background Statistics Estimation for Anomaly Detection in Hyperspectral Imagery , 2014, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[13]  Antonio J. Plaza,et al.  Real-Time Identification of Hyperspectral Subspaces , 2014, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[14]  Saeid Homayouni,et al.  An Approach for Subpixel Anomaly Detection in Hyperspectral Images , 2013, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[15]  Antonio J. Plaza,et al.  The Promise of Reconfigurable Computing for Hyperspectral Imaging Onboard Systems: A Review and Trends , 2013, Proceedings of the IEEE.

[16]  Jon Atli Benediktsson,et al.  Spectral Derivative Features for Classification of Hyperspectral Remote Sensing Images: Experimental Evaluation , 2013, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[17]  Hao Chen,et al.  Forest applications with hyperspectral imaging , 2012, 2012 IEEE International Geoscience and Remote Sensing Symposium.

[18]  John P. Kerekes,et al.  SpecTIR hyperspectral airborne Rochester experiment data collection campaign , 2012, Defense + Commercial Sensing.

[19]  Ye Zhang,et al.  An improved spectral reflectance and derivative feature fusion for hyperspectral image classification , 2011, 2011 IEEE International Geoscience and Remote Sensing Symposium.

[20]  Qian Du,et al.  High Performance Computing for Hyperspectral Remote Sensing , 2011, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[21]  Abel Paz,et al.  GPU implementation of target and anomaly detection algorithms for remotely sensed hyperspectral image analysis , 2010, Optical Engineering + Applications.

[22]  Yuliya Tarabalka,et al.  Real-time anomaly detection in hyperspectral images using multivariate normal mixture models and GPU processing , 2009, Journal of Real-Time Image Processing.

[23]  Chein-I Chang,et al.  Multiple-Window Anomaly Detection for Hyperspectral Imagery , 2008, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[24]  George A. Lampropoulos,et al.  Hyperspectral Classification Fusion for Classifying Different Military Targets , 2008, IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium.

[25]  Nasser Kehtarnavaz,et al.  JRTIP first issue editorial , 2006, Journal of Real-Time Image Processing.

[26]  Antonio J. Plaza,et al.  Parallel implementation of endmember extraction algorithms from hyperspectral data , 2006, IEEE Geoscience and Remote Sensing Letters.

[27]  Heesung Kwon,et al.  Kernel RX-algorithm: a nonlinear anomaly detector for hyperspectral imagery , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[28]  William Philpot,et al.  A derivative-aided hyperspectral image analysis system for land-cover classification , 2002, IEEE Trans. Geosci. Remote. Sens..

[29]  Chein-I Chang,et al.  Anomaly detection and classification for hyperspectral imagery , 2002, IEEE Trans. Geosci. Remote. Sens..

[30]  Bradley T. Blume,et al.  Multispectral and hyperspectral imaging: applications for medical and surgical diagnostics , 1997, Proceedings of the 19th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 'Magnificent Milestones and Emerging Opportunities in Medical Engineering' (Cat. No.97CH36136).

[31]  Xiaoli Yu,et al.  Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution , 1990, IEEE Trans. Acoust. Speech Signal Process..

[32]  A F Goetz,et al.  Imaging Spectrometry for Earth Remote Sensing , 1985, Science.

[33]  Lianru Gao,et al.  Graphics processing unit–accelerated computation of the Markov random fields and loopy belief propagation algorithms for hyperspectral image classification , 2015 .

[34]  Lianru Gao,et al.  Real-time implementation of optimized maximum noise fraction transform for feature extraction of hyperspectral images , 2014 .