The measurement calculus

Measurement-based quantum computation has emerged from the physics community as a new approach to quantum computation where the notion of measurement is the main driving force of computation. This is in contrast with the more traditional circuit model that is based on unitary operations. Among measurement-based quantum computation methods, the recently introduced one-way quantum computer [Raussendorf and Briegel 2001] stands out as fundamental. We develop a rigorous mathematical model underlying the one-way quantum computer and present a concrete syntax and operational semantics for programs, which we call patterns, and an algebra of these patterns derived from a denotational semantics. More importantly, we present a calculus for reasoning locally and compositionally about these patterns. We present a rewrite theory and prove a general standardization theorem which allows all patterns to be put in a semantically equivalent standard form. Standardization has far-reaching consequences: a new physical architecture based on performing all the entanglement in the beginning, parallelization by exposing the dependency structure of measurements and expressiveness theorems. Furthermore we formalize several other measurement-based models, for example, Teleportation, Phase and Pauli models and present compositional embeddings of them into and from the one-way model. This allows us to transfer all the theory we develop for the one-way model to these models. This shows that the framework we have developed has a general impact on measurement-based computation and is not just particular to the one-way quantum computer.

[1]  D. Deutsch Quantum computational networks , 1989, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[2]  Simon Perdrix,et al.  Unifying quantum computation with projective measurements only and one-way quantum computation , 2004, Other Conferences.

[3]  R Raussendorf,et al.  A one-way quantum computer. , 2001, Physical review letters.

[4]  I. Chuang,et al.  Quantum Teleportation is a Universal Computational Primitive , 1999, quant-ph/9908010.

[5]  Michael A. Nielsen,et al.  Noise thresholds for optical cluster-state quantum computation (26 pages) , 2006 .

[6]  Peter Selinger,et al.  Dagger Compact Closed Categories and Completely Positive Maps: (Extended Abstract) , 2007, QPL.

[7]  Debbie W. Leung,et al.  Computation by measurements: A unifying picture , 2004 .

[8]  I. G. BONNER CLAPPISON Editor , 1960, The Electric Power Engineering Handbook - Five Volume Set.

[9]  Daniel Gottesman,et al.  Stabilizer Codes and Quantum Error Correction , 1997, quant-ph/9705052.

[10]  Hans-J. Briegel,et al.  Computational model underlying the one-way quantum computer , 2002, Quantum Inf. Comput..

[11]  Miklos Santha,et al.  A Decision Procedure for Unitary Linear Quantum Cellular Automata , 2002, SIAM J. Comput..

[12]  Maribel Fernández The Lambda Calculus , 2009 .

[13]  Benoît Valiron,et al.  A Lambda Calculus for Quantum Computation with Classical Control , 2005, TLCA.

[14]  Prakash Panangaden,et al.  Reasoning About Quantum Knowledge , 2005, FSTTCS.

[15]  DanosVincent,et al.  The measurement calculus , 2007 .

[16]  Samson Abramsky,et al.  A categorical quantum logic , 2006, Math. Struct. Comput. Sci..

[17]  Michael A. Nielsen,et al.  Quantum computation by measurement and quantum memory , 2003 .

[18]  Archil Avaliani,et al.  Quantum Computers , 2004, ArXiv.

[19]  Vincent Danos,et al.  1-qubit versus 2-qubit measurement based quantum computing , 2005 .

[20]  A. Karimi,et al.  Master‟s thesis , 2011 .

[21]  郭光灿,et al.  量子存储(Quantum memory) , 2002 .

[22]  W. Dur,et al.  Steady-state entanglement in open and noisy quantum systems , 2006 .

[23]  D. Deutsch Quantum theory, the Church–Turing principle and the universal quantum computer , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[24]  Michael A. Nielsen,et al.  Universal quantum computation using only projective measurement, quantum memory, and preparation of the 0 state , 2001 .

[25]  S. C. Benjamin,et al.  Optical generation of matter qubit graph states , 2005, quant-ph/0506110.

[26]  Dan Suciu,et al.  Journal of the ACM , 2006 .

[27]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[28]  Elham Kashefi,et al.  Distributed Measurement-based Quantum Computation , 2007, Electron. Notes Theor. Comput. Sci..

[29]  Peter Selinger,et al.  Towards a quantum programming language , 2004, Mathematical Structures in Computer Science.

[30]  Ben Reichardt,et al.  Fault-Tolerant Quantum Computation , 2016, Encyclopedia of Algorithms.

[31]  M. Nielsen Optical quantum computation using cluster States. , 2004, Physical review letters.

[32]  E. Kashefi,et al.  Determinism in the one-way model , 2005, quant-ph/0506062.

[33]  Philippe Jorrand,et al.  Toward a quantum process algebra , 2004, CF '04.

[34]  Jonathan Grattage A functional quantum programming language , 2005, 20th Annual IEEE Symposium on Logic in Computer Science (LICS' 05).

[35]  Lov K. Grover A framework for fast quantum mechanical algorithms , 1997, STOC '98.

[36]  Henk Barendregt,et al.  The Lambda Calculus: Its Syntax and Semantics , 1985 .

[37]  C. Moura Alves,et al.  Efficient generation of graph states for quantum computation , 2005 .

[38]  Mehdi Mhalla,et al.  Complexity of Graph State Preparation , 2004 .

[39]  Jeff W. Sanders,et al.  Quantum Programming , 2000, MPC.

[40]  Simon Perdrix STATE TRANSFER INSTEAD OF TELEPORTATION IN MEASUREMENT-BASED QUANTUM COMPUTATION , 2005 .

[41]  Wim van Dam,et al.  QUANTUM CELLULAR AUTOMATA , 1996 .

[42]  J GaySimon,et al.  Quantum programming languages: survey and bibliography , 2006 .

[43]  H. S. Allen The Quantum Theory , 1928, Nature.

[44]  André van Tonder,et al.  A Lambda Calculus for Quantum Computation , 2003, SIAM J. Comput..

[45]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[46]  T. Rudolph,et al.  Resource-efficient linear optical quantum computation. , 2004, Physical review letters.

[47]  Bernhard Ömer Procedural Quantum Programming , 2002 .

[48]  H. Briegel,et al.  Measurement-based quantum computation on cluster states , 2003, quant-ph/0301052.

[49]  Gerald Gilbert,et al.  Efficient construction of photonic quantum-computational clusters , 2006 .

[50]  Dirk Schlingemann Cluster states, algorithms and graphs , 2004, Quantum Inf. Comput..

[51]  P. Panangaden,et al.  Parsimonious and robust realizations of unitary maps in the one-way model , 2005 .

[52]  D. Deutsch,et al.  Rapid solution of problems by quantum computation , 1992, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[53]  C. Moura Alves,et al.  Controlled generation of graph states for quantum computation in spin chains , 2004 .

[54]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[55]  Simon J. Gay,et al.  Quantum Programming Languages Survey and Bibliography , 2006 .

[56]  Alexander Yu. Vlasov,et al.  On Quantum Cellular Automata , 2004, ArXiv.

[57]  Qing Chen,et al.  Efficient construction of two-dimensional cluster states with probabilistic quantum gates , 2006 .

[58]  Jiannis K. Pachos,et al.  Graph-state preparation and quantum computation with global addressing of optical lattices , 2006 .

[59]  Man-Duen Choi Completely positive linear maps on complex matrices , 1975 .

[60]  Prakash Panangaden,et al.  Quantum weakest preconditions , 2005, Mathematical Structures in Computer Science.

[61]  N. Mermin Quantum theory: Concepts and methods , 1997 .

[62]  Dan E. Browne,et al.  Brokered graph-state quantum computation , 2005, quant-ph/0509209.

[63]  J. Eisert,et al.  Multiparty entanglement in graph states , 2003, quant-ph/0307130.

[64]  Elham Kashefi,et al.  Parallelizing quantum circuits , 2007, Theor. Comput. Sci..

[65]  Samson Abramsky,et al.  A categorical semantics of quantum protocols , 2004, Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science, 2004..

[66]  Shin-Cheng Mu,et al.  Functional Quantum Programming , 2001, APLAS.

[67]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and EPR channels , 1993 .

[68]  P. Jorrand,et al.  Measurement-Based Quantum Turing Machines and their Universality , 2004, quant-ph/0404146.

[69]  M. Paternostro,et al.  AN ECONOMICAL ROUTE TO ONE-WAY QUANTUM COMPUTATION , 2004, quant-ph/0412156.

[70]  M. Paternostro,et al.  Natural three-qubit interactions in one-way quantum computing (5 pages) , 2006 .

[71]  Physical Review , 1965, Nature.

[72]  A. Kitaev,et al.  Universal quantum computation with ideal Clifford gates and noisy ancillas (14 pages) , 2004, quant-ph/0403025.

[73]  Bart De Moor,et al.  Graphical description of the action of local Clifford transformations on graph states , 2003, quant-ph/0308151.

[74]  Umesh V. Vazirani,et al.  Quantum complexity theory , 1993, STOC.

[75]  Elham Kashefi,et al.  Phase map decompositions for unitaries , 2006 .

[76]  Isaac L. Chuang,et al.  Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations , 1999, Nature.

[77]  Pieter Kok,et al.  Efficient high-fidelity quantum computation using matter qubits and linear optics , 2005 .

[78]  Elham Kashefi,et al.  A direct approach to fault-tolerance in measurement-based quantum computation via teleportation , 2006, quant-ph/0611273.

[79]  Dominique Unruh Quantum Programs With Classical Output Streams: (Extended Abstract) , 2007, Electron. Notes Theor. Comput. Sci..

[80]  Hans-J. Briegel,et al.  Cluster States , 2009, Compendium of Quantum Physics.

[81]  Michael A. Nielsen,et al.  Fault-tolerant quantum computation with cluster states , 2005 .

[82]  A. Zeilinger,et al.  Experimental one-way quantum computing , 2005, Nature.

[83]  Dan E. Browne,et al.  Efficient linear optical quantum computation , 2004 .

[84]  Samson Abramsky,et al.  A categorical semantics of quantum protocols , 2004, LICS 2004.

[85]  W Dür,et al.  Multiparticle entanglement purification for graph states. , 2003, Physical review letters.

[86]  Elham Kashefi,et al.  Pauli Measurements are Universal , 2007, Electron. Notes Theor. Comput. Sci..

[87]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[88]  Rajagopal Nagarajan,et al.  Communicating quantum processes , 2004, POPL '05.

[89]  Bart De Moor,et al.  Efficient algorithm to recognize the local Clifford equivalence of graph states , 2004 .

[90]  Debbie W. Leung,et al.  Quantum computation by measurements , 2003 .

[91]  John Watrous,et al.  On one-dimensional quantum cellular automata , 1995, Proceedings of IEEE 36th Annual Foundations of Computer Science.

[92]  David Deutsch Quantum computers , 1987 .

[93]  Debbie W. Leung,et al.  Unified derivations of measurement-based schemes for quantum computation , 2005 .

[94]  J. Preskill Fault-tolerant quantum computation , 1997, quant-ph/9712048.

[95]  P. Selinger Towards a semantics for higher-order quantum computation , 2004 .

[96]  Asher Peres,et al.  Quantum Theory: Concepts and Methods , 1994 .

[97]  R. Werner,et al.  Reversible quantum cellular automata , 2004, quant-ph/0405174.

[98]  Vlatko Vedral,et al.  AN ECONOMICAL ROUTE TO ONE-WAY QUANTUM COMPUTATION , 2006 .