On Frölich twisted bundles
暂无分享,去创建一个
[1] M. Taylor,et al. Hasse–Witt invariants of symmetric complexes: an example from geometry , 2002 .
[2] B. Erez,et al. Invariants of a quadratic form attached to a tame covering of schemes , 2000 .
[3] Takeshi Saito. The sign of the functional equation of the L-function of an orthogonal motive , 1995 .
[4] B. Kahn. Equivariant Stiefel-Whitney classes , 1994 .
[5] J. Jardine. Higher spinor classes , 1994 .
[6] H. Esnault,et al. Coverings with odd ramification and Stiefel-Whitney classes. , 1993 .
[7] M. Ojanguren,et al. The Clifford algebra of a metabolic space , 1991 .
[8] Max-Albert Knus,et al. Quadratic and Hermitian Forms over Rings , 1991 .
[9] V. Snaith. Stiefel-Whitney Classes of a Symmetric Bilinear Form — A Formula of Serre , 1985, Canadian Mathematical Bulletin.
[10] A. Fröhlich. Orthogonal representations of Galois groups, Stiefel-Whitney classes and Hasse-Witt invariants. , 1985 .
[11] Jean-Pierre Serre. L'invariant de Witt de la forme Tr(x2) , 1984 .
[12] M. Ojanguren. A splitting theorem for quadratic forms , 1982 .
[13] Manfred Knebusch,et al. Symmetric bilinear forms over algebraic varieties , 1977 .
[14] P. Deligne. Les constantes locales de l'équation fonctionnelle de la fonctionL d'Artin d'une représentation orthogonale , 1976 .
[15] O. Laborde. Classes de Stiefel-Whitney en cohomologie étale , 1976 .
[16] A. Fröhlich,et al. On the functional equation of the ArtinL-function for characters of real representations , 1973 .