Glacier Mapping and Monitoring Using Multispectral Data

Multispectral satellite data represent the primary data source for spaceborne glacier mapping and monitoring, and remote-sensing studies have generated significant results regarding global glacier observations and understandings. In this chapter we provide an overview of the use of multispectral data and the methods typically applied in glacier studies. Besides multispectral techniques based on the visible and near-infrared section and the shortwave infrared section of the spectrum, we also briefly discuss methods for analyzing thermal and radar data, with special emphasis on the mapping of debris-covered glacier ice. A further focus is on spectral change detection techniques applied to multitemporal data, with special attention to a novel image-differencing technique. Then we provide an overview of satellite image-based measurement of glacier flow. Finally, we offer a suggestion for a new combination of glacier observations to be made by both multispectral and radar/microwave remote-sensing sensors.

[1]  Martin Hoelzle,et al.  First results and interpretation of energy-flux measurements over Alpine permafrost , 2000, Annals of Glaciology.

[2]  Yi-Hsing Tseng,et al.  Automatic tracking of crevasses on satellite images , 1995 .

[3]  Andreas Kääb,et al.  Remote sensing based assessment of hazards from glacier lake outbursts: a case study in the Swiss Alps , 2002 .

[4]  L. Nicholson,et al.  Calculating ice melt beneath a debris layer using meteorological data , 2006, Journal of Glaciology.

[5]  Andreas Bauder,et al.  Towards an Indirect Determination of the Mass‐balance Distribution of Glaciers using the Kinematic Boundary Condition , 1999 .

[6]  A. Klein,et al.  Modern and last local glacial maximum snowlines in the Central Andes of Peru, Bolivia, and Northern Chile , 1999 .

[7]  B. Markham,et al.  Spectral characterization of the LANDSAT Thematic Mapper sensors , 1985 .

[8]  Frank Paul,et al.  EVALUATION OF DIFFERENT METHODS FOR GLACIER MAPPING USING LANDSAT TM , 2000 .

[9]  Ronald Kwok,et al.  Ice sheet motion and topography from radar interferometry , 1996, IEEE Trans. Geosci. Remote. Sens..

[10]  Ian M. Howat,et al.  Efficient Automated Glacier Surface Velocity Measurement From Repeat Images Using Multi-Image/Multichip and Null Exclusion Feature Tracking , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[11]  B. Bookhagen,et al.  Spatially variable response of Himalayan glaciers to climate change affected by debris cover , 2011 .

[12]  Application of a conceptual precipitation-runoff model (HYCYMODEL) in a debris-covered glacierized basin in the Langtang Valley, Nepal Himalaya , 1997 .

[13]  C. Schaaf,et al.  Evaluation of surface and near-surface melt characteristics on the Greenland ice sheet using MODIS and QuikSCAT data , 2009 .

[14]  Andreas Kääb,et al.  Landsat-derived glacier inventory for Jotunheimen, Norway, and deduced glacier changes since the 1930s , 2008 .

[15]  Dorothy K. Hall,et al.  Reflectances of glaciers as calculated using Landsat-5 Thematic Mapper data , 1988 .

[16]  John R. Jensen,et al.  Introductory Digital Image Processing: A Remote Sensing Perspective , 1986 .

[17]  A. Kääb,et al.  SURFACE DEFORMATION OF CREEPING MOUNTAIN PERMAFROST. PHOTOGRAMMETRIC INVESTIGATIONS ON ROCK GLACIER MURTÈL, SWISS ALPS. , 1998 .

[18]  Andreas Kääb,et al.  Recent glacier changes in the Alps observed by satellite: Consequences for future monitoring strategies , 2007 .

[19]  H. Yabuki,et al.  Characteristics of Khumbu Glacier, Nepal Himalaya: recent change in the debris-covered area , 1999, Annals of Glaciology.

[20]  Photogrammetric reconstruction of glacier mass balance using a kinematic ice-flow model: a 20 year time series on Grubengletscher, Swiss Alps , 2000, Annals of Glaciology.

[21]  Andreas Kääb,et al.  Measurement of Surface Displacement and Deformation of Mass Movements Using Least Squares Matching of Repeat High Resolution Satellite and Aerial Images , 2012, Remote. Sens..

[22]  S. Leprince,et al.  Glacier-surface velocities in alpine terrain from optical satellite imagery—Accuracy improvement and quality assessment , 2008 .

[23]  Andreas Kääb,et al.  Combining satellite multispectral image data and a digital elevation model for mapping debris-covered glaciers , 2004 .

[24]  L. Boresjö Bronge,et al.  Ice and snow-type classification in the Vestfold Hills, East Antarctica, using Landsat-TM data and ground radiometer measurements , 1999 .

[25]  Jostein Amlien,et al.  Visible and near-infrared digital images for determination of ice velocities and surface elevation during a surge on Osbornebreen, a tidewater glacier in Svalbard , 1997 .

[26]  R. Bindschadler,et al.  Application of image cross-correlation to the measurement of glacier velocity using satellite image data , 1992 .

[27]  M. Schaepman,et al.  Combination Of Geometric And Atmospheric Correction For Aviris Data In Rugged Terrain , 1998 .

[28]  A. Luckman,et al.  Quantification of Everest region glacier velocities between 1992 and 2002, using satellite radar interferometry and feature tracking , 2009, Journal of Glaciology.

[29]  A. Neumann,et al.  Glaziale und periglaziale Prozesse: Von der statischen zur dynamischen Visualisierung , 2003, KN - Journal of Cartography and Geographic Information.

[30]  Wouter H. Knap,et al.  Comparison of Landsat TM-derived and ground-based albedos of Haut Glacier d'Arolla, Switzerland , 1999 .

[31]  R. Engeset Comparison of annual changes in winter ERS-1 SAR images and glacier mass balance of Slakbreen, Svalbard , 1999 .

[32]  Frank Paul,et al.  The new Swiss glacier inventory 2000 : application of remote sensing and GIS , 2003 .

[33]  Andreas Kääb,et al.  Spatial variability of recent glacier area changes in the Tien Shan Mountains, Central Asia, using Corona (~ 1970), Landsat (~ 2000), and ALOS (~ 2007) satellite data , 2010 .

[34]  A. Kääb,et al.  Geochemical characterization of supraglacial debris via in situ and optical remote sensing methods: a case study in Khumbu Himalaya, Nepal , 2012 .

[35]  Jan-Gunnar Winther,et al.  Landsat TM derived and in situ summer reflectance of glaciers in Svalbard , 1993 .

[36]  Nozomu Takeuchi,et al.  Temporal and spatial variations in spectral reflectance and characteristics of surface dust on Gulkana Glacier, Alaska Range , 2009, Journal of Glaciology.

[37]  E. Vuillermoz,et al.  Spatial distribution of debris thickness and melting from remote-sensing and meteorological data, at debris-covered Baltoro glacier, Karakoram, Pakistan , 2008, Annals of Glaciology.

[38]  Helmut Rott,et al.  Retrieval of wet snow by means of multitemporal SAR data , 2000, IEEE Trans. Geosci. Remote. Sens..

[39]  A. Kääb Monitoring high-mountain terrain deformation from repeated air- and spaceborne optical data: examples using digital aerial imagery and ASTER data , 2002 .

[40]  Andreas Kääb,et al.  Perspectives on the production of a glacier inventory from multispectral satellite data in Arctic Canada: Cumberland Peninsula, Baffin Island , 2005, Annals of Glaciology.

[41]  F. Sabins,et al.  Remote sensing for mineral exploration , 1999 .

[42]  Jeffrey S. Kargel,et al.  ASTER measurement of supraglacial lakes in the Mount Everest region of the Himalaya , 2002, Annals of Glaciology.

[43]  Aparna Shukla,et al.  Synergistic approach for mapping debris-covered glaciers using optical–thermal remote sensing data with inputs from geomorphometric parameters , 2010 .

[44]  Sébastien Leprince,et al.  Co-Registration of Optically Sensed Images and Correlation (COSI-Corr): an operational methodology for ground deformation measurements , 2007, 2007 IEEE International Geoscience and Remote Sensing Symposium.

[45]  J. Dowdeswell,et al.  A surge of Perseibreen, Svalbard, examined using aerial photography and ASTER high resolution satellite imagery , 2003 .

[46]  E. Barrett,et al.  Characteristic snow and ice properties of a Norwegian ice cap determined from complex ERS SAR , 1997 .

[47]  L. Rowan,et al.  Lithologic mapping in the Mountain Pass, California area using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data , 2003 .

[48]  R. Koelemeijer,et al.  The surface reflectance of the Hintereisferner from Landsat 5 TM imagery , 1993 .

[49]  Dorothy K. Hall,et al.  Comparison of in situ and satellite-derived reflectances of Forbindels Glacier, Greenland , 1990 .

[50]  Dorothy K. Hall,et al.  Comparison of satellite-derived with ground-based measurements of the fluctuations of the margins of Vatnajökull, Iceland, 1973–92 , 1997, Annals of Glaciology.

[51]  Koji Fujita,et al.  Spatial Distribution of Thermal Properties on Debris-Covered Glaciers in the Himalayas Derived From ASTER Data , 2006 .

[52]  Tobias Bolch,et al.  Glacier changes in the Garhwal Himalaya, India, from 1968 to 2006 based on remote sensing , 2011, Journal of Glaciology.

[53]  Pedro Skvarca,et al.  Recent behaviour of Glaciar Upsala, a fast-flowing calving glacier in Lago Argentino, southern Patagonia , 2003, Annals of Glaciology.

[54]  J. Foster,et al.  Comparison of in situ and Landsat derived reflectance of Alaskan glaciers , 1989 .

[55]  Helmut Rott,et al.  Synergism of SAR and Landsat TM imagery for thematic investigations in complex terrain , 1992 .

[56]  Michael P. Bishop,et al.  Terrain analysis and data modeling for alpine glacier mapping , 2001 .

[57]  T. Painter,et al.  Retrieval of subpixel snow-covered area and grain size from imaging spectrometer data , 2003 .

[58]  A. Luckman,et al.  Ice velocity and climate variations for Baltoro Glacier, Pakistan , 2009 .

[59]  S. Warren,et al.  A Model for the Spectral Albedo of Snow. I: Pure Snow , 1980 .

[60]  S. Warren,et al.  Optical constants of ice from the ultraviolet to the microwave: A revised compilation , 2008 .

[61]  A. Kääb,et al.  Glacier Monitoring From ASTER Imagery: Accuracy and Applications , 2001 .

[62]  Dorothy K. Hall,et al.  Analysis of glacier facies using satellite techniques , 1991, Journal of Glaciology.

[63]  Andreas Kääb,et al.  The new remote-sensing-derived Swiss glacier inventory: II. First results , 2002, Annals of Glaciology.

[64]  Anil V. Kulkarni,et al.  Hyperspectral analysis of snow reflectance to understand the effects of contamination and grain size , 2010, Annals of Glaciology.

[65]  Andreas Kääb,et al.  The new remote-sensing-derived Swiss glacier inventory: I. Methods , 2002, Annals of Glaciology.

[66]  T. Bolch,et al.  Landsat-based inventory of glaciers in western Canada, 1985-2005 , 2010 .

[67]  W. B. Whalley The Relationship of Glacier Ice and Rock Glacier at Grubengletscher, Kanton Wallis, Switzerland , 1979 .

[68]  R. S. Williams,et al.  Satellite‐derived, melt‐season surface temperature of the Greenland Ice Sheet (2000–2005) and its relationship to mass balance , 2006 .

[69]  Adrian N. Evans,et al.  Glacier surface motion computation from digital image sequences , 2000, IEEE Trans. Geosci. Remote. Sens..

[70]  Danielle J. Marceau,et al.  Combining DEM Parameters With Landsat MSS And TM Imagery In A GIS For Mountain Glacier Characterization , 1990 .

[71]  Y. Arnaud,et al.  Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas , 2012, Nature.

[72]  P. Skvarca,et al.  Monitoring ice shelf velocities from repeat MODIS and Landsat data - a method study on the Larsen C ice shelf, Antarctic Peninsula, and 10 other ice shelves around Antarctica , 2010 .

[73]  Andreas Kääb,et al.  Flow field of Kronebreen, Svalbard, using repeated Landsat 7 and ASTER data , 2005, Annals of Glaciology.

[74]  Bernd Etzelmüller,et al.  Surface energy fluxes and distribution models of permafrost in European mountain areas: an overview of current developments , 2001 .

[75]  Betty L. Hickman,et al.  SPOT Panchromatic Imagery and Neural Networks for Information Extraction in a Complex Mountain Environment , 1999 .

[76]  D. Hall,et al.  Development of methods for mapping global snow cover using moderate resolution imaging spectroradiometer data , 1995 .

[77]  Helmut Rott,et al.  Thematic studies in alpine areas by means of polarimetric SAR and optical imagery , 1994 .

[78]  E. Isaksson,et al.  Measuring snow and glacier ice properties from satellite , 2001 .

[79]  J. Dozier Spectral Signature of Alpine Snow Cover from the Landsat Thematic Mapper , 1989 .

[80]  Koji Fujita,et al.  Role of supraglacial ponds in the ablation process of a debris-covered glacier in the Nepal Himalayas , 2000 .

[81]  R. W. Sidjak Glacier mapping of the Illecillewaet icefield, British Columbia, Canada, using Landsat TM and digital elevation data , 1999 .

[82]  M. Nakawo,et al.  Estimate of Glacier Ablation under a Debris Layer from Surface Temperature and Meteorological Variables , 1982, Journal of Glaciology.

[83]  Alessandro Capra,et al.  Comparison between glacier ice velocities inferred from GPS and sequential satellite images , 1998, Annals of Glaciology.

[84]  R. Crippen A simple spatial filtering routine for the cosmetic removal of scan-line noise from Landsat TM P-tape imagery , 1989 .

[85]  A. Kb,et al.  Surface Geometry, Thickness Changes and Flow Fields on Creeping Mountain Permafrost: Automatic Extraction by Digital Image Analysis , 2000 .

[86]  T. Bolch,et al.  Multi-decadal mass loss of glaciers in the Everest area (Nepal Himalaya) derived from stereo imagery , 2011 .

[87]  Dorothy K. Hall,et al.  Glaciological observations of Brúarjökull, Iceland, using synthetic aperture radar and thematic mapper satellite data , 1995, Annals of Glaciology.

[88]  A. Kääb,et al.  Co-registration and bias corrections of satellite elevation data sets for quantifying glacier thickness change , 2011 .

[89]  Michael P. Bishop,et al.  Glacier velocities across the central Karakoram , 2009, Annals of Glaciology.

[90]  W. Haeberli,et al.  Mapping the distribution of buried glacier ice--an example from Lago delle Locce, Monte Rosa, Italian Alps , 1986 .

[91]  R. Alley,et al.  Brief communication Greenland's shrinking ice cover: "fast times" but not that fast , 2011 .

[92]  Jeffrey S. Kargel,et al.  Global Land Ice Measurements from Space (GLIMS): Remote Sensing and GIS Investigations of the Earth's Cryosphere , 2004 .

[93]  T. Albert,et al.  Evaluation of Remote Sensing Techniques for Ice-Area Classification Applied to the Tropical Quelccaya Ice Cap, Peru , 2002 .

[94]  Robert E. Crippen,et al.  The dangers of underestimating the importance of data adjustments in band ratioing , 1988 .

[95]  Andreas Kääb,et al.  A new DEM of the Austfonna ice cap by combining differential SAR interferometry with ICESat laser altimetry , 2012 .

[96]  Wolfgang Förstner Image Preprocessing for Feature Extraction in Digital Intensity, Color and Range Images , 2000 .

[97]  Didier Tanré,et al.  Second Simulation of the Satellite Signal in the Solar Spectrum, 6S: an overview , 1997, IEEE Trans. Geosci. Remote. Sens..

[98]  H. Oerter,et al.  Correlation between Antarctic dry snow properties and backscattering characteristics in RADARSAT imagery , 1999 .

[99]  A. Kääb,et al.  Sub-pixel precision image matching for measuring surface displacements on mass movements using normalized cross-correlation , 2011 .

[100]  Andreas Kääb,et al.  Modelling mass balance using photogrammetric and geophysical data : a pilot study at Griesgletscher, Swiss Alps , 1999 .

[101]  T. Bolch,et al.  A glacier inventory for the western Nyainqentanglha Range and the Nam Co Basin, Tibet, and glacier changes 1976-2009 , 2010 .

[102]  J. Rudant,et al.  Flow speed and calving rate of Kongsbreen glacier, Svalbard, using SPOT images , 1994 .

[103]  Anna Rampini,et al.  Glacier monitoring by satellite , 1983 .

[104]  A. Kääb,et al.  Evaluation of existing image matching methods for deriving glacier surface displacements globally from optical satellite imagery , 2011 .

[105]  D. Mouat,et al.  Remote sensing techniques in the analysis of change detection , 1993 .

[106]  Roger G. Barry,et al.  Recommendations for the compilation of glacier inventory data from digital sources , 2009, Annals of Glaciology.

[107]  Manfred F. Buchroithner,et al.  Identification of glacier motion and potentially dangerous glacial lakes in the Mt. Everest region/Nepal using spaceborne imagery , 2008 .

[108]  Michel Fily,et al.  Snow grain-size determination from Landsat imagery over Terre Adélie, Antarctica , 1993 .

[109]  A. Kääb Combination of SRTM3 and repeat ASTER data for deriving alpine glacier flow velocities in the Bhutan Himalaya , 2005 .

[110]  Stephen G. Warren,et al.  Optical Properties of Snow , 1982 .

[111]  Thomas H. Painter,et al.  Detection and Quantification of Snow Algae with an Airborne Imaging Spectrometer , 2001, Applied and Environmental Microbiology.

[112]  C. Justice,et al.  An examination of spectral band ratioing to reduce the topographic effect on remotely sensed data , 1981 .

[113]  Ashbindu Singh,et al.  Review Article Digital change detection techniques using remotely-sensed data , 1989 .

[114]  Elisabetta Binaghi,et al.  Fuzzy contextual classification of multisource remote sensing images , 1997, IEEE Trans. Geosci. Remote. Sens..

[115]  Dorothy K. Hall,et al.  Glacier recession in Iceland and Austria , 1992 .

[116]  Daniel G. Brown,et al.  Supervised classification of types of glaciated landscapes using digital elevation data , 1998 .

[117]  B. Menounos,et al.  An inventory and morphometric analysis of British Columbia glaciers, Canada , 2008, Journal of Glaciology.

[118]  Tobias Bolch,et al.  Glacier mapping in high mountains using DEMs, Landsat and ASTER data , 2005 .

[119]  G. Østrem Ice Melting under a Thin Layer of Moraine, and the Existence of Ice Cores in Moraine Ridges , 1959 .

[120]  R. E. Walker,et al.  Color enhancement of highly correlated images. I - Decorrelation and HSI contrast stretches. [hue saturation intensity , 1986 .

[121]  H. Yabuki,et al.  Changing surface features of Khumbu Glacier, Nepal Himalayas revealed by SPOT images , 1998 .

[122]  Armin Gruen,et al.  High-precision image matching for digital terrain model generation , 1987 .

[123]  Klaus I. Itten,et al.  A physically-based model to correct atmospheric and illumination effects in optical satellite data of rugged terrain , 1997, IEEE Trans. Geosci. Remote. Sens..

[124]  Masamu Aniya,et al.  The use of satellite and airborne imagery to inventory outlet glaciers of the Southern Patagonia Icefield, South America , 1996 .

[125]  R. Bamler,et al.  Synthetic aperture radar interferometry , 1998 .

[126]  Robert J. Stern,et al.  Geological control of massive sulfide mineralization in the Neoproterozoic Wadi Bidah shear zone, southwestern Saudi Arabia, inferences from orbital remote sensing and field studies , 2003 .

[127]  Andreas Kääb,et al.  Analysing the creep of mountain permafrost using high precision aerial photogrammetry: 25 years of monitoring Gruben rock glacier, Swiss Alps , 1997 .

[128]  Robert Leconte,et al.  A review of Canadian remote sensing applications in hydrology, 1995–1999 , 2000 .

[129]  F. Paul,et al.  Changes in glacier area in Tyrol, Austria, between 1969 and 1992 derived from Landsat 5 Thematic Mapper and Austrian Glacier Inventory data , 2002 .

[130]  Roberto Ranzi,et al.  Comparing the opportunities of Landsat-TM and Aster data for monitoring a debris covered glacier in the Italian Alps within the GLIMS project , 2002, IEEE International Geoscience and Remote Sensing Symposium.

[131]  Field Experiment on Glacier Ablation under a Layer of Debris Cover:Glaciological Expedition of Nepal, Contribution No. 33 , 1977 .

[132]  Philip J. Howarth,et al.  Using Landsat-5 thematic mapper and digital elevation data to determine the net radiation field of a Mountain Glacier , 1993 .

[133]  Adrian Luckman,et al.  The potential of satellite radar interferometry and feature tracking for monitoring flow rates of Himalayan glaciers , 2007 .

[134]  S. Liang Quantitative Remote Sensing of Land Surfaces , 2003 .

[135]  Am Mudabeti,et al.  Remote sensing 1 , 2013 .

[136]  N. Glasser,et al.  Morphological and ice-dynamical changes on the Tasman Glacier, New Zealand, 1990–2007 , 2009 .