Analysis and Modeling of Cross-Coupling and Substrate Capacitances in GaN HEMTs for Power-Electronic Applications

In this paper, we present a capacitance model for field-plate AlGaN/GaN High Electron Mobility Transistor (HEMTs) accounting for the contribution of substrate capacitances and cross-coupling between field plates. TCAD simulations are performed to analyze both these contributions and analytical expressions for charges corresponding to the cross-coupling and substrate capacitances are presented in terms of our existing surface-potential-based model. The modeled results are validated by comparing the time-domain waveforms of a test circuit using a mixed-mode simulation setup in which the impact of cross-coupling and substrate capacitances on accuracy of switching transients predicted by the model is discussed.

[1]  T. Chow,et al.  Silicon carbide benefits and advantages for power electronics circuits and systems , 2002, Proc. IEEE.

[2]  S. Khandelwal,et al.  Analytical Modeling of Surface-Potential and Intrinsic Charges in AlGaN/GaN HEMT Devices , 2012, IEEE Transactions on Electron Devices.

[3]  Siegfried Selberherr,et al.  Mixed-mode device simulation , 2000 .

[4]  B. J. Baliga,et al.  Power semiconductor device figure of merit for high-frequency applications , 1989, IEEE Electron Device Letters.

[5]  U. Mishra,et al.  AlGaN/GaN HEMTs-an overview of device operation and applications , 2002, Proc. IEEE.

[6]  Thomas Zimmer,et al.  Robust Surface-Potential-Based Compact Model for GaN HEMT IC Design , 2013, IEEE Transactions on Electron Devices.

[7]  Wenjie Chen,et al.  An Analytical Switching Process Model of Low-Voltage eGaN HEMTs for Loss Calculation , 2016, IEEE Transactions on Power Electronics.

[8]  S. Keller,et al.  High Breakdown Voltage Achieved on AlGaN/GaN HEMTs With Integrated Slant Field Plates , 2006, IEEE Electron Device Letters.

[9]  Y. Chauhan,et al.  Modeling of source/drain access resistances and their temperature dependence in GaN HEMTs , 2016, 2016 IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC).

[10]  Tor A. Fjeldly,et al.  A physics based compact model of I–V and C–V characteristics in AlGaN/GaN HEMT devices , 2012 .

[11]  R. E. Thomas,et al.  Carrier mobilities in silicon empirically related to doping and field , 1967 .

[12]  K. Boutros,et al.  1200-V Normally Off GaN-on-Si Field-Effect Transistors With Low Dynamic on -Resistance , 2011, IEEE Electron Device Letters.

[13]  Siegfried Selberherr,et al.  Technology Computer-Aided Design , 2007 .

[14]  John Choma,et al.  Mixed-mode PISCES-SPICE coupled circuit and device solver , 1988, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[15]  Pedro Alou,et al.  Physics-Based Analytical Model for Input, Output, and Reverse Capacitance of a GaN HEMT With the Field-Plate Structure , 2017, IEEE Transactions on Power Electronics.

[16]  K. Brennan,et al.  Electron transport characteristics of GaN for high temperature device modeling , 1998 .

[17]  E. Santi,et al.  An assessment of wide bandgap semiconductors for power devices , 2003 .

[18]  Pilsoon Choi,et al.  GaNFET compact model for linking device physics, high voltage circuit design and technology optimization , 2015, 2015 IEEE International Electron Devices Meeting (IEDM).

[19]  Eldad Bahat Treidel,et al.  AlGaN/GaN/AlGaN DH-HEMTs Breakdown Voltage Enhancement Using Multiple Grating Field Plates (MGFPs) , 2010, IEEE Transactions on Electron Devices.

[20]  Fred C. Lee,et al.  Analytical loss model of high voltage GaN HEMT in cascode configuration , 2014, 2013 IEEE Energy Conversion Congress and Exposition.

[21]  A. Nakajima,et al.  GaN Power Transistor Modeling for High-Speed Converter Circuit Design , 2013, IEEE Transactions on Electron Devices.

[22]  F. Lee,et al.  Evaluation and Application of 600 V GaN HEMT in Cascode Structure , 2014, IEEE Transactions on Power Electronics.

[23]  Sudip Ghosh,et al.  Capacitance Modeling in Dual Field-Plate Power GaN HEMT for Accurate Switching Behavior , 2016, IEEE Transactions on Electron Devices.

[24]  H. Mattausch,et al.  Analysis of GaN-HEMTs switching characteristics for power applications with compact model including parasitic contributions , 2016, 2016 28th International Symposium on Power Semiconductor Devices and ICs (ISPSD).

[25]  Yogesh Singh Chauhan,et al.  Surface-Potential-Based Compact Modeling of Gate Current in AlGaN/GaN HEMTs , 2015, IEEE Transactions on Electron Devices.

[26]  Philippe Godignon,et al.  A Survey of Wide Bandgap Power Semiconductor Devices , 2014, IEEE Transactions on Power Electronics.

[27]  Radoslava Mitova,et al.  Investigations of 600-V GaN HEMT and GaN Diode for Power Converter Applications , 2014, IEEE Transactions on Power Electronics.

[28]  B. Zhang,et al.  Breakdown-Voltage-Enhancement Technique for RF-Based AlGaN/GaN HEMTs With a Source-Connected Air-Bridge Field Plate , 2012, IEEE Electron Device Letters.

[29]  A. Chini,et al.  High breakdown voltage AlGaN-GaN HEMTs achieved by multiple field plates , 2004, IEEE Electron Device Letters.