A model and numerical method for compressible flows with capillary effects

A new model for interface problems with capillary effects in compressible fluids is presented together with a specific numerical method to treat capillary flows and pressure waves propagation. This new multiphase model is in agreement with physical principles of conservation and respects the second law of thermodynamics. A new numerical method is also proposed where the global system of equations is split into several submodels. Each submodel is hyperbolic or weakly hyperbolic and can be solved with an adequate numerical method. This method is tested and validated thanks to comparisons with analytical solutions (Laplace law) and with experimental results on droplet breakup induced by a shock wave.

[1]  S. Gavrilyuk,et al.  Dynamic compaction of granular materials , 2013, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[2]  Richard Saurel,et al.  Modelling detonation waves in condensed energetic materials: multiphase CJ conditions and multidimensional computations , 2009 .

[3]  Gerard M. Faeth,et al.  Near-limit drop deformation and secondary breakup , 1992 .

[4]  Richard Saurel,et al.  A compressible flow model with capillary effects , 2005 .

[5]  Richard Saurel,et al.  Diffuse interface model for high speed cavitating underwater systems , 2009 .

[6]  Rémi Abgrall,et al.  A Simple Method for Compressible Multifluid Flows , 1999, SIAM J. Sci. Comput..

[7]  S. L. Gavrilyuk,et al.  Diffuse interface model for compressible fluid - Compressible elastic-plastic solid interaction , 2012, J. Comput. Phys..

[8]  D. Joseph,et al.  Breakup of a liquid drop suddenly exposed to a high-speed airstream , 1999 .

[9]  James J. Quirk,et al.  On the dynamics of a shock–bubble interaction , 1994, Journal of Fluid Mechanics.

[10]  Nikolaus A. Adams,et al.  Scale separation for multi-scale modeling of free-surface and two-phase flows with the conservative sharp interface method , 2015, J. Comput. Phys..

[11]  Jomela C. Meng,et al.  Numerical simulations of the early stages of high-speed droplet breakup , 2015 .

[12]  O. G. Engel Fragmentation of waterdrops in the zone behind an air shock , 1958 .

[13]  Smadar Karni,et al.  Hybrid Multifluid Algorithms , 1996, SIAM J. Sci. Comput..

[14]  Grégoire Allaire,et al.  A five-equation model for the simulation of interfaces between compressible fluids , 2002 .

[15]  Richard Saurel,et al.  A multiphase model with internal degrees of freedom: application to shock–bubble interaction , 2003, Journal of Fluid Mechanics.

[16]  O. Le Métayer,et al.  Quantitative numerical and experimental studies of the shock accelerated heterogeneous bubbles motion , 2007 .

[17]  Steven F. Son,et al.  Two-Phase Modeling of DDT in Granular Materials: Reduced Equations , 2000 .

[18]  Nicolas Favrie,et al.  A thermodynamically compatible splitting procedure in hyperelasticity , 2014, J. Comput. Phys..

[19]  I. Bohachevsky,et al.  Finite difference method for numerical computation of discontinuous solutions of the equations of fluid dynamics , 1959 .

[20]  Boniface Nkonga,et al.  Towards the direct numerical simulation of nucleate boiling flows , 2014 .

[21]  Rémi Abgrall,et al.  Proposition de méthodes et modèles eulériens pour les problèmes à interfaces entre fluides compressibles en présence de transfert de chaleur , 2002 .

[22]  Kazuyoshi Takayama,et al.  Numerical simulation of shock wave interaction with a water column , 2001 .

[23]  S. Zaleski,et al.  Volume-of-Fluid Interface Tracking with Smoothed Surface Stress Methods for Three-Dimensional Flows , 1999 .

[24]  Nikolaus A. Adams,et al.  A conservative interface method for compressible flows , 2006, J. Comput. Phys..

[25]  F. Petitpas,et al.  A DISCRETE METHOD TO TREAT HEAT CONDUCTION IN COMPRESSIBLE TWO-PHASE FLOWS , 2014 .

[26]  S. Osher,et al.  Level set methods: an overview and some recent results , 2001 .

[27]  D. Stewart,et al.  Two-phase modeling of deflagration-to-detonation transition in granular materials: Reduced equations , 2001 .

[28]  Ronald Fedkiw,et al.  Level set methods and dynamic implicit surfaces , 2002, Applied mathematical sciences.

[29]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[30]  D. Juric,et al.  A front-tracking method for the computations of multiphase flow , 2001 .

[31]  Phil Welch,et al.  New turbines to Enable Efficient Geothermal Power Plants , 2009 .

[32]  Brij Lal,et al.  A textbook of sound , 1995 .

[33]  Nicolas Favrie,et al.  Criterion of Hyperbolicity in Hyperelasticity in the Case of the Stored Energy in Separable Form , 2014 .

[34]  Edward E. Zukoski,et al.  A model for characterization of a vortex pair formed by shock passage over a light-gas inhomogeneity , 1994, Journal of Fluid Mechanics.

[35]  S. Osher,et al.  A Non-oscillatory Eulerian Approach to Interfaces in Multimaterial Flows (the Ghost Fluid Method) , 1999 .

[36]  Hervé Guillard,et al.  Behavior of upwind scheme in the low Mach number limit: III. Preconditioned dissipation for a five equation two phase model , 2008 .

[37]  M. Pilch,et al.  Use of breakup time data and velocity history data to predict the maximum size of stable fragments for acceleration-induced breakup of a liquid drop , 1987 .

[38]  Nikolaus A. Adams,et al.  On the convergence of the weakly compressible sharp-interface method for two-phase flows , 2016, J. Comput. Phys..

[39]  E. Daniel,et al.  Experimental investigation of the propagation of a planar shock wave through a two-phase gas-liquid medium , 2011 .

[40]  R. Saurel,et al.  Rankine–Hugoniot relations for shocks in heterogeneous mixtures , 2007, Journal of Fluid Mechanics.

[41]  B. M. Devassy,et al.  Atomization modelling of liquid jets using a two-surface density approach. , 2015 .

[42]  Nikolaus A. Adams,et al.  A conservative sharp interface method for incompressible multiphase flows , 2015, J. Comput. Phys..

[43]  Barry Koren,et al.  Riemann-problem and level-set approaches for homentropic two-fluid flow computations , 2002 .

[44]  S. Osher,et al.  A level set approach for computing solutions to incompressible two-phase flow , 1994 .

[45]  E. Daniel,et al.  Shock waves in sprays: numerical study of secondary atomization and experimental comparison , 2016 .

[46]  S. Gavrilyuk Multiphase Flow Modeling via Hamilton’s Principle , 2011 .

[47]  Smadar Karni,et al.  Multicomponent Flow Calculations by a Consistent Primitive Algorithm , 1994 .

[48]  J. Brackbill,et al.  A continuum method for modeling surface tension , 1992 .

[49]  Richard Saurel,et al.  Simple and efficient relaxation methods for interfaces separating compressible fluids, cavitating flows and shocks in multiphase mixtures , 2009, J. Comput. Phys..

[50]  Boo Cheong Khoo,et al.  Ghost fluid method for strong shock impacting on material interface , 2003 .

[51]  Rémi Abgrall,et al.  Computations of compressible multifluids , 2001 .

[52]  Shiyi Chen,et al.  LATTICE BOLTZMANN METHOD FOR FLUID FLOWS , 2001 .

[53]  K. Takayama,et al.  Investigation of aerodynamic breakup of a cylindrical water droplet , 1998 .

[54]  Rémi Abgrall,et al.  Modelling phase transition in metastable liquids: application to cavitating and flashing flows , 2008, Journal of Fluid Mechanics.

[55]  G. M. Fa NEAR-LIMIT DROP DEFORMATION AND SECONDARY BREAKUP , 1992 .

[56]  S. Osher,et al.  Algorithms Based on Hamilton-Jacobi Formulations , 1988 .