A model and numerical method for compressible flows with capillary effects
暂无分享,去创建一个
Nicolas Favrie | Sergey L. Gavrilyuk | Fabien Petitpas | Eric Daniel | Kevin Schmidmayer | E. Daniel | F. Petitpas | S. Gavrilyuk | N. Favrie | K. Schmidmayer
[1] S. Gavrilyuk,et al. Dynamic compaction of granular materials , 2013, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[2] Richard Saurel,et al. Modelling detonation waves in condensed energetic materials: multiphase CJ conditions and multidimensional computations , 2009 .
[3] Gerard M. Faeth,et al. Near-limit drop deformation and secondary breakup , 1992 .
[4] Richard Saurel,et al. A compressible flow model with capillary effects , 2005 .
[5] Richard Saurel,et al. Diffuse interface model for high speed cavitating underwater systems , 2009 .
[6] Rémi Abgrall,et al. A Simple Method for Compressible Multifluid Flows , 1999, SIAM J. Sci. Comput..
[7] S. L. Gavrilyuk,et al. Diffuse interface model for compressible fluid - Compressible elastic-plastic solid interaction , 2012, J. Comput. Phys..
[8] D. Joseph,et al. Breakup of a liquid drop suddenly exposed to a high-speed airstream , 1999 .
[9] James J. Quirk,et al. On the dynamics of a shock–bubble interaction , 1994, Journal of Fluid Mechanics.
[10] Nikolaus A. Adams,et al. Scale separation for multi-scale modeling of free-surface and two-phase flows with the conservative sharp interface method , 2015, J. Comput. Phys..
[11] Jomela C. Meng,et al. Numerical simulations of the early stages of high-speed droplet breakup , 2015 .
[12] O. G. Engel. Fragmentation of waterdrops in the zone behind an air shock , 1958 .
[13] Smadar Karni,et al. Hybrid Multifluid Algorithms , 1996, SIAM J. Sci. Comput..
[14] Grégoire Allaire,et al. A five-equation model for the simulation of interfaces between compressible fluids , 2002 .
[15] Richard Saurel,et al. A multiphase model with internal degrees of freedom: application to shock–bubble interaction , 2003, Journal of Fluid Mechanics.
[16] O. Le Métayer,et al. Quantitative numerical and experimental studies of the shock accelerated heterogeneous bubbles motion , 2007 .
[17] Steven F. Son,et al. Two-Phase Modeling of DDT in Granular Materials: Reduced Equations , 2000 .
[18] Nicolas Favrie,et al. A thermodynamically compatible splitting procedure in hyperelasticity , 2014, J. Comput. Phys..
[19] I. Bohachevsky,et al. Finite difference method for numerical computation of discontinuous solutions of the equations of fluid dynamics , 1959 .
[20] Boniface Nkonga,et al. Towards the direct numerical simulation of nucleate boiling flows , 2014 .
[21] Rémi Abgrall,et al. Proposition de méthodes et modèles eulériens pour les problèmes à interfaces entre fluides compressibles en présence de transfert de chaleur , 2002 .
[22] Kazuyoshi Takayama,et al. Numerical simulation of shock wave interaction with a water column , 2001 .
[23] S. Zaleski,et al. Volume-of-Fluid Interface Tracking with Smoothed Surface Stress Methods for Three-Dimensional Flows , 1999 .
[24] Nikolaus A. Adams,et al. A conservative interface method for compressible flows , 2006, J. Comput. Phys..
[25] F. Petitpas,et al. A DISCRETE METHOD TO TREAT HEAT CONDUCTION IN COMPRESSIBLE TWO-PHASE FLOWS , 2014 .
[26] S. Osher,et al. Level set methods: an overview and some recent results , 2001 .
[27] D. Stewart,et al. Two-phase modeling of deflagration-to-detonation transition in granular materials: Reduced equations , 2001 .
[28] Ronald Fedkiw,et al. Level set methods and dynamic implicit surfaces , 2002, Applied mathematical sciences.
[29] J. Sethian,et al. Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .
[30] D. Juric,et al. A front-tracking method for the computations of multiphase flow , 2001 .
[31] Phil Welch,et al. New turbines to Enable Efficient Geothermal Power Plants , 2009 .
[32] Brij Lal,et al. A textbook of sound , 1995 .
[33] Nicolas Favrie,et al. Criterion of Hyperbolicity in Hyperelasticity in the Case of the Stored Energy in Separable Form , 2014 .
[34] Edward E. Zukoski,et al. A model for characterization of a vortex pair formed by shock passage over a light-gas inhomogeneity , 1994, Journal of Fluid Mechanics.
[35] S. Osher,et al. A Non-oscillatory Eulerian Approach to Interfaces in Multimaterial Flows (the Ghost Fluid Method) , 1999 .
[36] Hervé Guillard,et al. Behavior of upwind scheme in the low Mach number limit: III. Preconditioned dissipation for a five equation two phase model , 2008 .
[37] M. Pilch,et al. Use of breakup time data and velocity history data to predict the maximum size of stable fragments for acceleration-induced breakup of a liquid drop , 1987 .
[38] Nikolaus A. Adams,et al. On the convergence of the weakly compressible sharp-interface method for two-phase flows , 2016, J. Comput. Phys..
[39] E. Daniel,et al. Experimental investigation of the propagation of a planar shock wave through a two-phase gas-liquid medium , 2011 .
[40] R. Saurel,et al. Rankine–Hugoniot relations for shocks in heterogeneous mixtures , 2007, Journal of Fluid Mechanics.
[41] B. M. Devassy,et al. Atomization modelling of liquid jets using a two-surface density approach. , 2015 .
[42] Nikolaus A. Adams,et al. A conservative sharp interface method for incompressible multiphase flows , 2015, J. Comput. Phys..
[43] Barry Koren,et al. Riemann-problem and level-set approaches for homentropic two-fluid flow computations , 2002 .
[44] S. Osher,et al. A level set approach for computing solutions to incompressible two-phase flow , 1994 .
[45] E. Daniel,et al. Shock waves in sprays: numerical study of secondary atomization and experimental comparison , 2016 .
[46] S. Gavrilyuk. Multiphase Flow Modeling via Hamilton’s Principle , 2011 .
[47] Smadar Karni,et al. Multicomponent Flow Calculations by a Consistent Primitive Algorithm , 1994 .
[48] J. Brackbill,et al. A continuum method for modeling surface tension , 1992 .
[49] Richard Saurel,et al. Simple and efficient relaxation methods for interfaces separating compressible fluids, cavitating flows and shocks in multiphase mixtures , 2009, J. Comput. Phys..
[50] Boo Cheong Khoo,et al. Ghost fluid method for strong shock impacting on material interface , 2003 .
[51] Rémi Abgrall,et al. Computations of compressible multifluids , 2001 .
[52] Shiyi Chen,et al. LATTICE BOLTZMANN METHOD FOR FLUID FLOWS , 2001 .
[53] K. Takayama,et al. Investigation of aerodynamic breakup of a cylindrical water droplet , 1998 .
[54] Rémi Abgrall,et al. Modelling phase transition in metastable liquids: application to cavitating and flashing flows , 2008, Journal of Fluid Mechanics.
[55] G. M. Fa. NEAR-LIMIT DROP DEFORMATION AND SECONDARY BREAKUP , 1992 .
[56] S. Osher,et al. Algorithms Based on Hamilton-Jacobi Formulations , 1988 .