High Performance Computing in Satellite SAR Interferometry: A Critical Perspective

Synthetic aperture radar (SAR) interferometry has rapidly evolved in the last decade and can be considered today as a mature technology, which incorporates computationally intensive and data-intensive tasks. In this paper, a perspective on the state-of-the-art of high performance computing (HPC) methodologies applied to spaceborne SAR interferometry (InSAR) is presented, and the different parallel algorithms for interferometric processing of SAR data are critically discussed at different levels. Emphasis is placed on the key processing steps, which typically occur in the interferometric techniques, categorized according to their computational relevance. Existing implementations of the different InSAR stages using diverse parallel strategies and architectures are examined and their performance discussed. Furthermore, some InSAR computational schemes selected in the literature are analyzed at the level of the entire processing chain, thus emphasizing their potentialities and limitations. Therefore, the survey focuses on the inherent computational approaches enabling large-scale interferometric SAR processing, thus offering insight into some open issues, and outlining future trends in the field.

[1]  Francesco De Zan,et al.  Vegetation and soil moisture inversion from SAR closure phases: First experiments and results , 2018, Remote Sensing of Environment.

[2]  Qian Sun,et al.  Improved Goldstein filter for InSAR noise reduction based on local SNR , 2013 .

[3]  Bodo Bookhagen,et al.  OSARIS, the “Open Source SAR Investigation System” for Automatized Parallel InSAR Processing of Sentinel-1 Time Series Data With Special Emphasis on Cryosphere Applications , 2019, Front. Earth Sci..

[4]  N. D’Agostino,et al.  Aseismic transient during the 2010–2014 seismic swarm: evidence for longer recurrence of M ≥ 6.5 earthquakes in the Pollino gap (Southern Italy)? , 2017, Scientific Reports.

[5]  T. Wright,et al.  How satellite InSAR has grown from opportunistic science to routine monitoring over the last decade , 2020, Nature Communications.

[6]  Alberto Refice,et al.  Application of multi-temporal differential interferometry to slope instability detection in urban/peri-urban areas , 2006 .

[7]  Gianfranco Fornaro,et al.  A two-dimensional region growing least squares phase unwrapping algorithm for interferometric SAR processing , 1999, IEEE Trans. Geosci. Remote. Sens..

[8]  Sylwester Arabas,et al.  Formula translation in Blitz++, NumPy and modern Fortran: A case study of the language choice tradeoffs , 2013, Sci. Program..

[9]  Veronica Tofani,et al.  Persistent Scatterer Interferometry (PSI) Technique for Landslide Characterization and Monitoring , 2013, Remote. Sens..

[10]  Vladimir Greif,et al.  Monitoring of post-failure landslide deformation by the PS-InSAR technique at Lubietova in Central Slovakia , 2012, Environmental Earth Sciences.

[11]  Brian Brisco,et al.  Multi-temporal, multi-frequency, and multi-polarization coherence and SAR backscatter analysis of wetlands , 2018 .

[12]  Nan Wu,et al.  Analytic Search Method for Interferometric SAR Image Registration , 2008, IEEE Geoscience and Remote Sensing Letters.

[13]  Xianyu Su,et al.  Reliability-guided phase unwrapping algorithm: a review ☆ , 2004 .

[14]  Davide Cozzolino,et al.  The Offset-Compensated Nonlocal Filtering of Interferometric Phase , 2018, Remote. Sens..

[15]  Zhenhong Li,et al.  Resolving three-dimensional surface displacements from InSAR measurements: A review , 2014 .

[16]  Cécile Lasserre,et al.  CorPhU: an algorithm based on phase closure for the correction of unwrapping errors in SAR interferometry , 2020, Geophysical Journal International.

[17]  Howard A. Zebker,et al.  Decorrelation in interferometric radar echoes , 1992, IEEE Trans. Geosci. Remote. Sens..

[18]  Mark D. Pritt,et al.  Least-squares two-dimensional phase unwrapping using FFT's , 1994, IEEE Trans. Geosci. Remote. Sens..

[19]  Fan Zhang,et al.  Accelerating Spaceborne SAR Imaging Using Multiple CPU/GPU Deep Collaborative Computing , 2016, Sensors.

[20]  Mark D. Pritt,et al.  Phase unwrapping by means of multigrid techniques for interferometric SAR , 1996, IEEE Trans. Geosci. Remote. Sens..

[21]  Timo Balz,et al.  GPU accelerated interferometric SAR processing for Sentinel-1 TOPS data , 2019, Comput. Geosci..

[22]  M. G. Ciminelli,et al.  Analysis of surface deformations over the whole Italian territory by interferometric processing of ERS, Envisat and COSMO-SkyMed radar data , 2017 .

[23]  Mario Costantini,et al.  A novel phase unwrapping method based on network programming , 1998, IEEE Trans. Geosci. Remote. Sens..

[24]  Antonio Pepe,et al.  Seismo‐tectonic behavior of the Pernicana Fault System (Mt Etna): A gauge for volcano flank instability? , 2013 .

[25]  Sabela Ramos,et al.  Performance analysis of HPC applications in the cloud , 2013, Future Gener. Comput. Syst..

[26]  Yueping Yin,et al.  Integration of GPS with InSAR to monitoring of the Jiaju landslide in Sichuan, China , 2010 .

[27]  Fabio Rocca,et al.  Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry , 2000, IEEE Trans. Geosci. Remote. Sens..

[28]  Sang Boem Lim,et al.  HPC Cloud Architecture to Reduce HPC Workflow Complexity in Containerized Environments , 2021 .

[29]  R. Keith Raney,et al.  Precision SAR processing using chirp scaling , 1994, IEEE Trans. Geosci. Remote. Sens..

[30]  Susan Coghlan The Magellan Final Report on Cloud Computing , 2013 .

[31]  Francesco Casu,et al.  What causes subsidence following the 2011 eruption at Nabro (Eritrea)? , 2018, Progress in Earth and Planetary Science.

[32]  Núria Devanthéry,et al.  Persistent Scatterer Interferometry: A review , 2016 .

[33]  Weidong Yu,et al.  The SAR Payload Design and Performance for the GF-3 Mission , 2017, Sensors.

[34]  Nicola Casagli,et al.  The Evolution of Wide-Area DInSAR: From Regional and National Services to the European Ground Motion Service , 2020, Remote. Sens..

[35]  R. Bamler,et al.  Synthetic aperture radar interferometry , 1998 .

[36]  Marco Lapegna,et al.  Designing a GPU-parallel algorithm for raw SAR data compression: A focus on parallel performance estimation , 2020, Future Gener. Comput. Syst..

[37]  Fabio Rocca,et al.  Permanent scatterers in SAR interferometry , 2001, IEEE Trans. Geosci. Remote. Sens..

[39]  Chao Wang,et al.  Multi-Temporal InSAR Parallel Processing for Sentinel-1 Large-Scale Surface Deformation Mapping , 2020, Remote. Sens..

[40]  Shaowen Wang A CyberGIS Framework for the Synthesis of Cyberinfrastructure, GIS, and Spatial Analysis , 2010 .

[41]  Konstantinos Papathanassiou,et al.  A new technique for noise filtering of SAR interferometric phase images , 1998, IEEE Trans. Geosci. Remote. Sens..

[42]  Ho Tong Minh Dinh,et al.  Radar Interferometry: 20 Years of Development in Time Series Techniques and Future Perspectives , 2020, Remote. Sens..

[43]  Riccardo Lanari A new method for the compensation of the SAR range cell migration based on the chirp z-transform , 1995, IEEE Trans. Geosci. Remote. Sens..

[44]  Marcos Adami,et al.  Evaluation of polarimetry and interferometry of sentinel-1A SAR data for land use and land cover of the Brazilian Amazon Region , 2020, Geocarto International.

[45]  Catherine Proy,et al.  FLATSIM: The ForM@Ter LArge-Scale Multi-Temporal Sentinel-1 InterferoMetry Service , 2021, Remote. Sens..

[46]  A. Walther,et al.  InSAR processing for the recognition of landslides , 2008 .

[47]  G. Ma,et al.  Experimental Study on the Effects of Unloading Normal Stress on Shear Mechanical Behaviour of Sandstone Containing a Parallel Fissure Pair , 2019, Rock Mechanics and Rock Engineering.

[48]  Fernando Tinetti,et al.  Synthetic aperture radar signal processing in parallel using GPGPU , 2015, The Journal of Supercomputing.

[49]  Michael P. Poland,et al.  Towards coordinated regional multi-satellite InSAR volcano observations: results from the Latin America pilot project , 2018, Journal of Applied Volcanology.

[50]  Pasquale Imperatore,et al.  Multithreading Based Parallel Processing for Image Geometric Coregistration in SAR Interferometry , 2021, Remote. Sens..

[51]  C. Wauthier,et al.  Unraveling long-term volcano flank instability at Pacaya Volcano, Guatemala, using satellite geodesy , 2020 .

[52]  Xiaoling Zhang,et al.  A Phase Filtering Method with Scale Recurrent Networks for InSAR , 2020, Remote. Sens..

[53]  Gianfranco Fornaro,et al.  Analysis at medium scale of low-resolution DInSAR data in slow-moving landslide-affected areas , 2009 .

[54]  Jack J. Dongarra,et al.  Exascale computing and big data , 2015, Commun. ACM.

[55]  Janusz Wasowski,et al.  Investigating landslides with space-borne Synthetic Aperture Radar (SAR) interferometry , 2006 .

[56]  Gianfranco Fornaro,et al.  Advanced low- and full-resolution DInSAR map generation for slow-moving landslide analysis at different scales , 2010 .

[57]  Jong-Sen Lee,et al.  Intensity and phase statistics of multilook polarimetric and interferometric SAR imagery , 1994, IEEE Trans. Geosci. Remote. Sens..

[58]  Yixian Tang,et al.  Recent advancements in multi-temporal methods applied to new generation SAR systems and applications in South America , 2021 .

[59]  Davide Notti,et al.  Multi-sensor advanced DInSAR monitoring of very slow landslides: The Tena Valley case study (Central Spanish Pyrenees) , 2013 .

[60]  Diego Reale,et al.  Geodetic Model of the March 2021 Thessaly Seismic Sequence Inferred from Seismological and InSAR Data , 2021, Remote. Sens..

[61]  G. Solaro,et al.  Satellite SAR Interferometry for Earth’s Crust Deformation Monitoring and Geological Phenomena Analysis , 2016 .

[62]  S. Fujiwara,et al.  Detection of triggered shallow slips caused by large earthquakes using L-band SAR interferometry , 2020, Earth, Planets and Space.

[63]  Wei Liu,et al.  A Wide-Swath Spaceborne TOPS SAR Image Formation Algorithm Based on Chirp Scaling and Chirp-Z Transform , 2016, Sensors.

[64]  T. Wright,et al.  Shallow axial magma chamber at the slow-spreading Erta Ale Ridge , 2012 .

[65]  Franck Cappello,et al.  Big data and extreme-scale computing , 2018, Int. J. High Perform. Comput. Appl..

[66]  I. Papoutsis,et al.  A reasoned bibliography on SAR interferometry applications and outlook on big interferometric data processing , 2020 .

[67]  Achille Peternier,et al.  Performance analysis of GPU-based SAR and interferometric SAR image processing , 2013, Conference Proceedings of 2013 Asia-Pacific Conference on Synthetic Aperture Radar (APSAR).

[68]  Antonio Pepe,et al.  A Phase-Preserving Focusing Technique for TOPS Mode SAR Raw Data Based on Conventional Processing Methods , 2019, Sensors.

[69]  Achille Peternier,et al.  Near-real-time focusing of ENVISAT ASAR Stripmap and Sentinel-1 TOPS imagery exploiting OpenCL GPGPU technology , 2017 .

[70]  Fabiana Calò,et al.  Evaluation of the SBAS InSAR Service of the European Space Agency's Geohazard Exploitation Platform (GEP) , 2017, Remote. Sens..

[71]  Antonio Pepe,et al.  Theory and Statistical Description of the Enhanced Multi-Temporal InSAR (E-MTInSAR) Noise-Filtering Algorithm , 2019, Remote. Sens..

[72]  Ian G. Cumming,et al.  Interpretations of the omega-K algorithm and comparisons with other algorithms , 2003, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477).

[73]  Bruno Schulze,et al.  An Analysis of Public Clouds Elasticity in the Execution of Scientific Applications: a Survey , 2016, Journal of Grid Computing.

[74]  Wei Xu,et al.  TOPSAR data focusing based on azimuth scaling preprocessing , 2011 .

[75]  Roberto Tomás,et al.  Monitoring activity at the Daguangbao mega-landslide (China) using Sentinel-1 TOPS time series interferometry , 2016 .

[76]  Nicola Casagli,et al.  Semi-automated extraction of Deviation Indexes (DI) from satellite Persistent Scatterers time series: tests on sedimentary volcanism and tectonically-induced motions , 2012 .

[77]  Mengdao Xing,et al.  A Fast Phase Unwrapping Method for Large-Scale Interferograms , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[78]  Malcolm Davidson,et al.  GMES Sentinel-1 mission , 2012 .

[79]  Qian Sun,et al.  Spatial-temporal surface deformation of Los Angeles over 2003-2007 from weighted least squares DInSAR , 2013, Int. J. Appl. Earth Obs. Geoinformation.

[80]  Zemin Wang,et al.  Time-Series Analysis of Subsidence in Nanning, China, Based on Sentinel-1A Data by the SBAS InSAR Method , 2020, PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science.

[81]  Xavier Blaes,et al.  Retrieving crop parameters based on tandem ERS 1/2 interferometric coherence images , 2003 .

[82]  Mahdi Motagh,et al.  Sentinel-1 InSAR over Germany: Large-Scale Interferometry, Atmospheric Effects, and Ground Deformation Mapping , 2017 .

[83]  Fabio Rocca,et al.  Dynamics of Slow-Moving Landslides from Permanent Scatterer Analysis , 2004, Science.

[84]  Aaron Zimmer,et al.  CUDA Optimization of Non-Local Means Extended to Wrapped Gaussian Distributions for Interferometric Phase Denoising , 2016, ICCS.

[85]  Alberto Moreira,et al.  Coregistration of interferometric SAR images using spectral diversity , 2000, IEEE Trans. Geosci. Remote. Sens..