Optimally discriminant moments for speckle detection in real B-scan images.

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[3]  R. F. Wagner,et al.  Statistics of Speckle in Ultrasound B-Scans , 1983, IEEE Transactions on Sonics and Ultrasonics.

[4]  P. Shankar Speckle Reduction in Ultrasound B-Scans Using Weighted Averaging in Spatial Compounding , 1986, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[5]  Robert C. Bolles,et al.  Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography , 1981, CACM.

[6]  M.F. Insana,et al.  Characterization of tissue from ultrasound images , 1988, IEEE Control Systems Magazine.

[7]  James F. Greenleaf,et al.  Adaptive speckle reduction filter for log-compressed B-scan images , 1996, IEEE Trans. Medical Imaging.

[8]  Robert Rohling,et al.  Spatial Compounding of 3-D Ultrasound Images , 1997, IPMI.

[9]  R. M. Cramblitt,et al.  Generation of non-Rayleigh speckle distributions using marked regularity models , 1999, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[10]  Andrew R. Webb,et al.  Statistical Pattern Recognition , 1999 .

[11]  M E Anderson,et al.  Speckle tracking for multi-dimensional flow estimation. , 2000, Ultrasonics.

[12]  S. Ghofrani,et al.  An adaptive speckle suppression filter based on Nakagami distribution , 2001, EUROCON'2001. International Conference on Trends in Communications. Technical Program, Proceedings (Cat. No.01EX439).

[13]  Andrew H. Gee,et al.  Speckle detection in ultrasound images using first order statistics , 2001 .

[14]  M. Srinivasan,et al.  Statistics of envelope of high-frequency ultrasonic backscatter from human skin in vivo , 2002, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[15]  Jacek M. Zurada,et al.  Estimation of K distribution parameters using neural networks , 2002, IEEE Transactions on Biomedical Engineering.

[16]  Xiaohui Hao,et al.  Characterization of reperfused infarcted myocardium from high-frequency intracardiac ultrasound imaging using homodyned K distribution , 2002, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[17]  Yasser M. Kadah,et al.  Real-time speckle reduction and coherence enhancement in ultrasound imaging via nonlinear anisotropic diffusion , 2002, IEEE Transactions on Biomedical Engineering.

[18]  Richard W Prager,et al.  Analysis of speckle in ultrasound images using fractional order statistics and the homodyned k-distribution. , 2002, Ultrasonics.

[19]  Andrew H. Gee,et al.  Decompression and speckle detection for ultrasound images using the homodyned k-distribution , 2003, Pattern Recognit. Lett..

[20]  Marcos Martín-Fernández,et al.  On low order moments of the homodyned-K distribution. , 2005, Ultrasonics.

[21]  Majid Mirmehdi,et al.  Computer vision elastography: speckle adaptive motion estimation for elastography using ultrasound sequences , 2005, IEEE Transactions on Medical Imaging.

[22]  J. Alison Noble,et al.  Ultrasound image segmentation: a survey , 2006, IEEE Transactions on Medical Imaging.

[23]  A. Tannenbaum,et al.  Despeckling of medical ultrasound images , 2006, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[24]  J. D’hooge,et al.  Statistics of the radio-frequency signal based on K distribution with application to echocardiography , 2006, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[25]  Hemant D. Tagare,et al.  Evaluation of Four Probability Distribution Models for Speckle in Clinical Cardiac Ultrasound Images , 2006, IEEE Transactions on Medical Imaging.

[26]  Richard W Prager,et al.  Sensorless reconstruction of unconstrained freehand 3D ultrasound data. , 2007, Ultrasound in medicine & biology.