On Post-Lie Algebras, Lie–Butcher Series and Moving Frames
暂无分享,去创建一个
[1] Christian Brouder,et al. Runge–Kutta methods and renormalization , 2000 .
[2] Free Lie algebras,et al. Free Lie algebras , 2015 .
[3] Peter J. Olver,et al. Geometric Integration Algorithms on Homogeneous Manifolds , 2002, Found. Comput. Math..
[4] Jean-Louis Loday,et al. Combinatorial Hopf algebras , 2008, 0810.0435.
[5] Hans Z. Munthe-Kaas,et al. Backward Error Analysis and the Substitution Law for Lie Group Integrators , 2011, Foundations of Computational Mathematics.
[6] Murray Gerstenhaber,et al. The Cohomology Structure of an Associative Ring , 1963 .
[7] P. Olver,et al. Moving Coframes: I. A Practical Algorithm , 1998 .
[8] Antonella Zanna,et al. Numerical integration of differential equations on homogeneous manifolds , 1997 .
[9] P. Crouch,et al. Numerical integration of ordinary differential equations on manifolds , 1993 .
[10] Hans Z. Munthe-Kaas,et al. Foundations of Computational Mathematics on the Hopf Algebraic Structure of Lie Group Integrators , 2022 .
[11] H. Munthe-Kaas,et al. Computations in a free Lie algebra , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[12] P. Olver. Equivalence, Invariants, and Symmetry: References , 1995 .
[13] H. Munthe-Kaas. High order Runge-Kutta methods on manifolds , 1999 .
[14] Parking Functions and Descent Algebras , 2004, math/0411387.
[15] Kurusch Ebrahimi-Fard,et al. Faà di Bruno Hopf Algebras, Dyson–Schwinger Equations, and Lie–Butcher Series , 2015 .
[16] S. Chern,et al. Differential Geometry: Cartan's Generalization of Klein's Erlangen Program , 2000 .
[17] P. Olver,et al. Connections for general group actions , 2003, math/0309234.
[18] N. J. A. Sloane,et al. The On-Line Encyclopedia of Integer Sequences , 2003, Electron. J. Comb..
[19] H. Munthe-Kaas. Runge-Kutta methods on Lie groups , 1998 .
[20] H. Munthe-Kaas. Lie-Butcher theory for Runge-Kutta methods , 1995 .
[21] Arne Marthinsen,et al. Runge-Kutta Methods Adapted to Manifolds and Based on Rigid Frames , 1999 .
[22] Antonella Zanna,et al. Generalized Polar Decompositions for the Approximation of the Matrix Exponential , 2001, SIAM J. Matrix Anal. Appl..
[23] Mihai Ivan,et al. Linear connections on Lie algebroids , 2006 .
[24] John B. Shoven,et al. I , Edinburgh Medical and Surgical Journal.
[25] Lie-admissible algebras and operads , 2002, math/0210291.
[26] Arthur Cayley,et al. The Collected Mathematical Papers: On the Theory of the Analytical Forms called Trees , 2009 .
[27] J. Butcher. Coefficients for the study of Runge-Kutta integration processes , 1963, Journal of the Australian Mathematical Society.
[28] Elizabeth L. Mansfield,et al. A Practical Guide to the Invariant Calculus , 2010 .
[29] Peter J. Olver,et al. A Survey of Moving Frames , 2004, IWMM/GIAE.
[30] Richard G. Larson,et al. Hopf-algebraic structure of families of trees , 1989 .
[31] Robert B. Gardner,et al. The Method of Equivalence and Its Applications , 1989 .
[32] Hans Munthe-Kaas,et al. Hopf algebras of formal diffeomorphisms and numerical integration on manifolds , 2009, 0905.0087.
[33] J. D. Tardós,et al. Publish or Perish , 1987 .
[34] Frederic Chapoton,et al. Pre-Lie algebras and the rooted trees operad , 2000 .
[35] Bruno Vallette,et al. Homology of generalized partition posets , 2007 .
[36] A. Iserles,et al. Lie-group methods , 2000, Acta Numerica.
[37] Brynjulf Owren,et al. Norges Teknisk-naturvitenskapelige Universitet Algebraic Structures on Ordered Rooted Trees and Their Significance to Lie Group Integrators , 2022 .
[38] Elena Celledoni,et al. On the Implementation of Lie Group Methods on the Stiefel Manifold , 2003, Numerical Algorithms.
[39] Stein Krogstad,et al. On enumeration problems in Lie-Butcher theory , 2003, Future Gener. Comput. Syst..
[40] A. C. Esq.,et al. XXVIII. On the theory of the analytical forms called trees , 1857 .
[41] H. Munthe-Kaas,et al. On algebraic structures of numerical integration on vector spaces and manifolds , 2011, 1112.4465.
[42] M. Spivak. A comprehensive introduction to differential geometry , 1979 .
[43] P. Olver,et al. Group Theory and Numerical Analysis , 2005 .
[44] Andrei A. Agrachev,et al. Chronological algebras and nonstationary vector fields , 1981 .
[45] Alain Connes,et al. Hopf Algebras, Renormalization and Noncommutative Geometry , 1998 .
[46] K. Mackenzie,et al. General theory of lie groupoids and lie algebroids , 2005 .
[47] Kurusch Ebrahimi-Fard,et al. The Magnus Expansion, Trees and Knuth’s Rotation Correspondence , 2014, Found. Comput. Math..
[48] Ernst Hairer,et al. On the Butcher group and general multi-value methods , 1974, Computing.
[49] Max Neunhöffer,et al. LIE Λ-ALGEBRAS , 2009 .
[50] John C. Butcher,et al. An algebraic theory of integration methods , 1972 .
[51] P. Olver,et al. Moving Coframes: II. Regularization and Theoretical Foundations , 1999 .
[52] K. Nomizu,et al. Foundations of Differential Geometry , 1963 .