On Post-Lie Algebras, Lie–Butcher Series and Moving Frames

Pre-Lie (or Vinberg) algebras arise from flat and torsion-free connections on differential manifolds. These algebras have been extensively studied in recent years, both from algebraic operadic points of view and through numerous applications in numerical analysis, control theory, stochastic differential equations and renormalization. Butcher series are formal power series founded on pre-Lie algebras, used in numerical analysis to study geometric properties of flows on Euclidean spaces. Motivated by the analysis of flows on manifolds and homogeneous spaces, we investigate algebras arising from flat connections with constant torsion, leading to the definition of post-Lie algebras, a generalization of pre-Lie algebras. Whereas pre-Lie algebras are intimately associated with Euclidean geometry, post-Lie algebras occur naturally in the differential geometry of homogeneous spaces, and are also closely related to Cartan’s method of moving frames. Lie–Butcher series combine Butcher series with Lie series and are used to analyze flows on manifolds. In this paper we show that Lie–Butcher series are founded on post-Lie algebras. The functorial relations between post-Lie algebras and their enveloping algebras, called D-algebras, are explored. Furthermore, we develop new formulas for computations in free post-Lie algebras and D-algebras, based on recursions in a magma, and we show that Lie–Butcher series are related to invariants of curves described by moving frames.

[1]  Christian Brouder,et al.  Runge–Kutta methods and renormalization , 2000 .

[2]  Free Lie algebras,et al.  Free Lie algebras , 2015 .

[3]  Peter J. Olver,et al.  Geometric Integration Algorithms on Homogeneous Manifolds , 2002, Found. Comput. Math..

[4]  Jean-Louis Loday,et al.  Combinatorial Hopf algebras , 2008, 0810.0435.

[5]  Hans Z. Munthe-Kaas,et al.  Backward Error Analysis and the Substitution Law for Lie Group Integrators , 2011, Foundations of Computational Mathematics.

[6]  Murray Gerstenhaber,et al.  The Cohomology Structure of an Associative Ring , 1963 .

[7]  P. Olver,et al.  Moving Coframes: I. A Practical Algorithm , 1998 .

[8]  Antonella Zanna,et al.  Numerical integration of differential equations on homogeneous manifolds , 1997 .

[9]  P. Crouch,et al.  Numerical integration of ordinary differential equations on manifolds , 1993 .

[10]  Hans Z. Munthe-Kaas,et al.  Foundations of Computational Mathematics on the Hopf Algebraic Structure of Lie Group Integrators , 2022 .

[11]  H. Munthe-Kaas,et al.  Computations in a free Lie algebra , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[12]  P. Olver Equivalence, Invariants, and Symmetry: References , 1995 .

[13]  H. Munthe-Kaas High order Runge-Kutta methods on manifolds , 1999 .

[14]  Parking Functions and Descent Algebras , 2004, math/0411387.

[15]  Kurusch Ebrahimi-Fard,et al.  Faà di Bruno Hopf Algebras, Dyson–Schwinger Equations, and Lie–Butcher Series , 2015 .

[16]  S. Chern,et al.  Differential Geometry: Cartan's Generalization of Klein's Erlangen Program , 2000 .

[17]  P. Olver,et al.  Connections for general group actions , 2003, math/0309234.

[18]  N. J. A. Sloane,et al.  The On-Line Encyclopedia of Integer Sequences , 2003, Electron. J. Comb..

[19]  H. Munthe-Kaas Runge-Kutta methods on Lie groups , 1998 .

[20]  H. Munthe-Kaas Lie-Butcher theory for Runge-Kutta methods , 1995 .

[21]  Arne Marthinsen,et al.  Runge-Kutta Methods Adapted to Manifolds and Based on Rigid Frames , 1999 .

[22]  Antonella Zanna,et al.  Generalized Polar Decompositions for the Approximation of the Matrix Exponential , 2001, SIAM J. Matrix Anal. Appl..

[23]  Mihai Ivan,et al.  Linear connections on Lie algebroids , 2006 .

[24]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[25]  Lie-admissible algebras and operads , 2002, math/0210291.

[26]  Arthur Cayley,et al.  The Collected Mathematical Papers: On the Theory of the Analytical Forms called Trees , 2009 .

[27]  J. Butcher Coefficients for the study of Runge-Kutta integration processes , 1963, Journal of the Australian Mathematical Society.

[28]  Elizabeth L. Mansfield,et al.  A Practical Guide to the Invariant Calculus , 2010 .

[29]  Peter J. Olver,et al.  A Survey of Moving Frames , 2004, IWMM/GIAE.

[30]  Richard G. Larson,et al.  Hopf-algebraic structure of families of trees , 1989 .

[31]  Robert B. Gardner,et al.  The Method of Equivalence and Its Applications , 1989 .

[32]  Hans Munthe-Kaas,et al.  Hopf algebras of formal diffeomorphisms and numerical integration on manifolds , 2009, 0905.0087.

[33]  J. D. Tardós,et al.  Publish or Perish , 1987 .

[34]  Frederic Chapoton,et al.  Pre-Lie algebras and the rooted trees operad , 2000 .

[35]  Bruno Vallette,et al.  Homology of generalized partition posets , 2007 .

[36]  A. Iserles,et al.  Lie-group methods , 2000, Acta Numerica.

[37]  Brynjulf Owren,et al.  Norges Teknisk-naturvitenskapelige Universitet Algebraic Structures on Ordered Rooted Trees and Their Significance to Lie Group Integrators , 2022 .

[38]  Elena Celledoni,et al.  On the Implementation of Lie Group Methods on the Stiefel Manifold , 2003, Numerical Algorithms.

[39]  Stein Krogstad,et al.  On enumeration problems in Lie-Butcher theory , 2003, Future Gener. Comput. Syst..

[40]  A. C. Esq.,et al.  XXVIII. On the theory of the analytical forms called trees , 1857 .

[41]  H. Munthe-Kaas,et al.  On algebraic structures of numerical integration on vector spaces and manifolds , 2011, 1112.4465.

[42]  M. Spivak A comprehensive introduction to differential geometry , 1979 .

[43]  P. Olver,et al.  Group Theory and Numerical Analysis , 2005 .

[44]  Andrei A. Agrachev,et al.  Chronological algebras and nonstationary vector fields , 1981 .

[45]  Alain Connes,et al.  Hopf Algebras, Renormalization and Noncommutative Geometry , 1998 .

[46]  K. Mackenzie,et al.  General theory of lie groupoids and lie algebroids , 2005 .

[47]  Kurusch Ebrahimi-Fard,et al.  The Magnus Expansion, Trees and Knuth’s Rotation Correspondence , 2014, Found. Comput. Math..

[48]  Ernst Hairer,et al.  On the Butcher group and general multi-value methods , 1974, Computing.

[49]  Max Neunhöffer,et al.  LIE Λ-ALGEBRAS , 2009 .

[50]  John C. Butcher,et al.  An algebraic theory of integration methods , 1972 .

[51]  P. Olver,et al.  Moving Coframes: II. Regularization and Theoretical Foundations , 1999 .

[52]  K. Nomizu,et al.  Foundations of Differential Geometry , 1963 .