The use of workflows in the design and implementation of complex experiments in macromolecular crystallography

A powerful and easy-to-use workflow environment has been developed at the ESRF for combining experiment control with online data analysis on synchrotron beamlines. This tool provides the possibility of automating complex experiments without the need for expertise in instrumentation control and programming, but rather by accessing defined beamline services.

[1]  F Cipriani,et al.  Automation of sample mounting for macromolecular crystallography. , 2006, Acta crystallographica. Section D, Biological crystallography.

[2]  Nobuhisa Watanabe,et al.  Semi‐automated protein crystal mounting device for the sulfur single‐wavelength anomalous diffraction method , 2010 .

[3]  良二 上田 J. Appl. Cryst.の発刊に際して , 1970 .

[4]  Nicholas K. Sauter,et al.  Automated diffraction image analysis and spot searching for high-throughput crystal screening , 2006 .

[5]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[6]  김삼묘,et al.  “Bioinformatics” 특집을 내면서 , 2000 .

[7]  Philippe Carpentier,et al.  Automated analysis of vapor diffusion crystallization drops with an X-ray beam. , 2004, Structure.

[8]  Raimond B G Ravelli,et al.  Improving radiation-damage substructures for RIP. , 2005, Acta crystallographica. Section D, Biological crystallography.

[9]  Alexander McPherson,et al.  Operator-assisted harvesting of protein crystals using a universal micromanipulation robot , 2007, Journal of applied crystallography.

[10]  Christian Morawe,et al.  The ID23-2 structural biology microfocus beamline at the ESRF , 2009, Journal of synchrotron radiation.

[11]  S Michael Soltis,et al.  Diffraction-based automated crystal centering. , 2007, Journal of synchrotron radiation.

[12]  Dennis Gannon,et al.  Workflows for e-Science, Scientific Workflows for Grids , 2014 .

[13]  Elspeth F. Garman,et al.  Radiation damage in macromolecular crystallography: what is it and why should we care? , 2010, Acta crystallographica. Section D, Biological crystallography.

[14]  G J Davies,et al.  The structure of the feruloyl esterase module of xylanase 10B from Clostridium thermocellum provides insights into substrate recognition. , 2001, Structure.

[15]  Peter Kuhn,et al.  Blu-Ice and the Distributed Control System: software for data acquisition and instrument control at macromolecular crystallography beamlines. , 2002, Journal of synchrotron radiation.

[16]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[17]  W. Hendrickson Determination of macromolecular structures from anomalous diffraction of synchrotron radiation. , 1991, Science.

[18]  Elspeth F. Garman,et al.  Know your dose : RADDOSE , 2010 .

[19]  Chapuis,et al.  On the geometry of a modern imaging diffractometer. , 1999, Acta crystallographica. Section A, Foundations of crystallography.

[20]  Randy J. Read,et al.  Acta Crystallographica Section D Biological , 2003 .

[21]  A. N. Popov,et al.  Optimization of data collection taking radiation damage into account , 2010, Acta crystallographica. Section D, Biological crystallography.

[22]  Sergey Stepanov,et al.  JBluIce-EPICS control system for macromolecular crystallography. , 2011, Acta crystallographica. Section D, Biological crystallography.

[23]  Timothy McPhillips,et al.  New paradigm for macromolecular crystallography experiments at SSRL: automated crystal screening and remote data collection , 2008, Acta crystallographica. Section D, Biological crystallography.

[24]  Nicholas K. Sauter,et al.  Robust indexing for automatic data collection , 2004, Journal of applied crystallography.

[25]  Victor S Lamzin,et al.  Auto-rickshaw: an automated crystal structure determination platform as an efficient tool for the validation of an X-ray diffraction experiment. , 2005, Acta crystallographica. Section D, Biological crystallography.

[26]  Didier Nurizzo,et al.  The ID23-1 structural biology beamline at the ESRF. , 2006, Journal of synchrotron radiation.

[27]  Frank von Delft,et al.  Assessment of radiation damage behaviour in a large collection of empirically optimized datasets highlights the importance of unmeasured complicating effects , 2011, Journal of synchrotron radiation.

[28]  Didier Nurizzo,et al.  A decade of user operation on the macromolecular crystallography MAD beamline ID14-4 at the ESRF , 2009, Journal of synchrotron radiation.

[29]  A. North,et al.  Structure Of Lysozyme: A Fourier Map of the Electron Density at 6 Å Resolution obtained by X-ray Diffraction , 1962, Nature.

[30]  Fei Long,et al.  BALBES: a molecular-replacement pipeline , 2007, Acta crystallographica. Section D, Biological crystallography.

[31]  A G Leslie,et al.  Biological Crystallography Integration of Macromolecular Diffraction Data , 2022 .

[32]  Florent Cipriani,et al.  Inducing phase changes in crystals of macromolecules: status and perspectives for controlled crystal dehydration. , 2011, Journal of structural biology.

[33]  Olof Svensson,et al.  Experimental procedure for the characterization of radiation damage in macromolecular crystals , 2011, Journal of synchrotron radiation.

[34]  Didier Nurizzo,et al.  MxCuBE: a synchrotron beamline control environment customized for macromolecular crystallography experiments , 2010, Journal of synchrotron radiation.

[35]  Z. Otwinowski,et al.  [20] Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.

[36]  Olof Svensson,et al.  EDNA: a framework for plugin-based applications applied to X-ray experiment online data analysis. , 2009, Journal of synchrotron radiation.

[37]  Edward A. Lee,et al.  Taming heterogeneity - the Ptolemy approach , 2003, Proc. IEEE.

[38]  Z Dauter,et al.  Data-collection strategies. , 1999, Acta crystallographica. Section D, Biological crystallography.

[39]  Philippe Carpentier,et al.  CATS: a Cryogenic Automated Transfer System installed on the beamline FIP at ESRF , 2004 .

[40]  J. H. Decker,et al.  Diffraction study of protein crystals grown in cryoloops and micromounts. , 2010, Journal of applied crystallography.

[41]  Sandor Brockhauser,et al.  Translation calibration of inverse-kappa goniometers in macromolecular crystallography , 2011, Acta crystallographica. Section A, Foundations of crystallography.

[42]  Olof Svensson,et al.  ISPyB: an information management system for synchrotron macromolecular crystallography , 2011, Bioinform..

[43]  Michael Becker,et al.  Automated sample-scanning methods for radiation damage mitigation and diffraction-based centering of macromolecular crystals. , 2011, Journal of synchrotron radiation.

[44]  Tom Alber,et al.  Automated protein crystal structure determination using ELVES. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[45]  Naji S Husseini,et al.  Quantifying X-ray radiation damage in protein crystals at cryogenic temperatures. , 2006, Acta crystallographica. Section D, Biological crystallography.

[46]  D Spruce,et al.  Automation of the collection and processing of X-ray diffraction data -- a generic approach. , 2002, Acta crystallographica. Section D, Biological crystallography.

[47]  Sebastien Petitdemange,et al.  Diffraction cartography: applying microbeams to macromolecular crystallography sample evaluation and data collection. , 2010, Acta crystallographica. Section D, Biological crystallography.

[48]  Florent Cipriani,et al.  Improving diffraction by humidity control: a novel device compatible with X-ray beamlines. , 2009, Acta crystallographica. Section D, Biological crystallography.

[49]  Graeme Winter,et al.  xia2: an expert system for macromolecular crystallography data reduction , 2010 .

[50]  Gwyndaf Evans,et al.  High-speed crystal detection and characterization using a fast-readout detector , 2010, Acta crystallographica. Section D, Biological crystallography.

[51]  A Beteva,et al.  High-throughput sample handling and data collection at synchrotrons: embedding the ESRF into the high-throughput gene-to-structure pipeline. , 2006, Acta crystallographica. Section D, Biological crystallography.

[52]  A. N. Popov,et al.  Choice of data-collection parameters based on statistic modelling. , 2003, Acta crystallographica. Section D, Biological crystallography.

[53]  G Eisenbrand,et al.  Inhibitor binding to active and inactive CDK2: the crystal structure of CDK2-cyclin A/indirubin-5-sulphonate. , 2001, Structure.

[54]  Frank Murphy,et al.  NE-CAT crystallography beamlines for challenging structural biology research , 2011 .

[55]  Jan Kroon,et al.  STRATEGY: a program to optimize the starting spindle angle and scan range for X-ray data collection , 1997 .