Orbital Forcing, Ice Volume, and CO2 Across the Oligocene‐Miocene Transition

Paleoclimate records suggest that a rapid major transient Antarctic glaciation occurred across the Oligocene‐Miocene transition (OMT; ca. 23 Ma; ~50‐m sea level equivalent in 200–300 kyr). Orbital forcing has long been cited as an important factor determining the timing of the OMT glacial event. A similar orbital configuration occurred 1.2 Myr prior to the OMT, however, and was not associated with a major climate event, suggesting that additional mechanisms play an important role in ice sheet growth and decay. To improve our understanding of the OMT, we present a boron isotope‐based CO2 record between 22 and 24 Ma. This new record shows that δ11B/CO2 was comparatively stable in the million years prior to the OMT glaciation and decreased by 0.7‰ (equivalent to a CO2 increase of ~65 ppm) over ~300 kyr during the subsequent deglaciation. More data are needed, but we propose that the OMT glaciation was triggered by the same forces that initiated sustained Antarctic glaciation at the Eocene‐Oligocene transition: long‐term decline in CO2 to a critical threshold and a superimposed orbital configuration favorable to glaciation (an eccentricity minimum and low‐amplitude obliquity change). When comparing the reconstructed CO2 increase with estimates of δ18Osw during the deglaciation phase of the OMT, we find that the sensitivity of the cryosphere to CO2 forcing is consistent with recent ice sheet modeling studies that incorporate retreat into subglacial basins via ice cliff collapse with modest CO2 increase, with clear implications for future sea level rise.

[1]  G. Foster,et al.  Robust Constraints on Past CO2 Climate Forcing From the Boron Isotope Proxy , 2018, Paleoceanography and Paleoclimatology.

[2]  P. Pearson,et al.  Constraining the evolution of Neogene ocean carbonate chemistry using the boron isotope pH proxy , 2018, Earth and Planetary Science Letters.

[3]  R. James,et al.  Silicate weathering and carbon cycle controls on the Oligocene-Miocene transition glaciation , 2017 .

[4]  Claire E Huck,et al.  Evolution of the early Antarctic ice ages , 2017, Proceedings of the National Academy of Sciences.

[5]  G. Foster,et al.  A new boron isotope-pH calibration for Orbulina universa, with implications for understanding and accounting for ‘vital effects’ , 2016 .

[6]  T. Herbert,et al.  Late Miocene global cooling and the rise of modern ecosystems , 2016 .

[7]  R. DeConto,et al.  Modeling the oxygen isotope composition of the Antarctic ice sheet and its significance to Pliocene sea level , 2016 .

[8]  R. DeConto,et al.  Dynamic Antarctic ice sheet during the early to mid-Miocene , 2016, Proceedings of the National Academy of Sciences.

[9]  G. Foster,et al.  A record of Neogene seawater δ11B reconstructed from paired δ11B analyses on benthic and planktic foraminifera , 2016 .

[10]  R. DeConto,et al.  Antarctic ice sheet sensitivity to atmospheric CO2 variations in the early to mid-Miocene , 2015, Proceedings of the National Academy of Sciences.

[11]  D. Lunt,et al.  Neogene ice volume and ocean temperatures: Insights from infaunal foraminiferal Mg/Ca paleothermometry , 2015 .

[12]  G. Haug,et al.  The effects of secular calcium and magnesium concentration changes on the thermodynamics of seawater acid/base chemistry: Implications for Eocene and Cretaceous ocean carbon chemistry and buffering , 2015 .

[13]  Richard B. Alley,et al.  Potential Antarctic Ice Sheet retreat driven by hydrofracturing and ice cliff failure , 2015 .

[14]  P. Ziveri,et al.  Boron isotope evidence for oceanic carbon dioxide leakage during the last deglaciation , 2015, Nature.

[15]  D. Lunt,et al.  Plio-Pleistocene climate sensitivity evaluated using high-resolution CO2 records , 2015, Nature.

[16]  C. Dumas,et al.  Links between CO 2 , glaciation and water flow: reconciling the Cenozoic history of the Antarctic Circumpolar Current , 2014 .

[17]  M. Mudelsee,et al.  Cenozoic climate changes: A review based on time series analysis of marine benthic δ18O records , 2014 .

[18]  G. Foster,et al.  Middle Miocene climate instability associated with high‐amplitude CO2 variability , 2014 .

[19]  B. Khim,et al.  Southward shift of the Intertropical Convergence Zone due to Northern Hemisphere cooling at the Oligocene-Miocene boundary , 2014 .

[20]  G. Lohmann,et al.  Climate warming during Antarctic ice sheet expansion at the Middle Miocene transition , 2014 .

[21]  C. Goldblatt,et al.  Radiative forcing at high concentrations of well‐mixed greenhouse gases , 2014 .

[22]  P. deMenocal,et al.  The Influence of Salinity on Mg/Ca in Planktic Foraminifers – Evidence from Cultures, Core-top Sediments and Complementary δ18O , 2013 .

[23]  A. Vengosh,et al.  Interlaboratory Comparison of Boron Isotope Analyses of Boric Acid, Seawater and Marine CaCO3 by MC-ICPMS and NTIMS , 2013 .

[24]  R. DeConto,et al.  A 40-million-year history of atmospheric CO2 , 2013, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[25]  P. Valdes,et al.  Paleogeographic controls on the onset of the Antarctic circumpolar current , 2013 .

[26]  T. Lowenstein,et al.  The major-ion composition of Cenozoic seawater: The past 36 million years from fluid inclusions in marine halite , 2013, American Journal of Science.

[27]  C. Lear,et al.  Carbon cycle feedbacks during the Oligocene-Miocene transient glaciation , 2013 .

[28]  B. Hönisch,et al.  Cenozoic boron isotope variations in benthic foraminifers , 2013 .

[29]  M. Kučera,et al.  Calibration of the boron isotope proxy in the planktonic foraminifera Globigerinoides ruber for use in palaeo-CO2 reconstruction , 2013 .

[30]  E. Rohling,et al.  Relationship between sea level and climate forcing by CO2 on geological timescales , 2013, Proceedings of the National Academy of Sciences.

[31]  W. Müller,et al.  Deep time foraminifera Mg/Ca paleothermometry: Nonlinear correction for secular change in seawater Mg/Ca , 2012 .

[32]  Bo Sun,et al.  Bedmap2: improved ice bed, surface and thickness datasets for Antarctica , 2012 .

[33]  G. Foster,et al.  The evolution of pCO2, ice volume and climate during the middle Miocene , 2012 .

[34]  F. Hilgen,et al.  On the Geologic Time Scale , 2012, Newsletters on Stratigraphy.

[35]  D. Pollard,et al.  Exploring uncertainties in the relationship between temperature, ice volume, and sea level over the past 50 million years , 2012 .

[36]  R. DeConto,et al.  The Role of Carbon Dioxide During the Onset of Antarctic Glaciation , 2011, Science.

[37]  B. Boer,et al.  Antarctic ice sheet and oceanographic response to eccentricity forcing during the early Miocene , 2011 .

[38]  F. Hasiuk,et al.  Application of calcite Mg partitioning functions to the reconstruction of paleocean Mg/Ca , 2010 .

[39]  M. Schulz,et al.  Simulating the sea-level imprint on marine oxygen-isotope records during the Middle Miocene using an ice sheet-climate model , 2010 .

[40]  A. Mackensen,et al.  Alkenone and boron based Pliocene pCO2 records , 2010 .

[41]  Andrew J. Watson,et al.  Corrigendum to "Climatological mean and decadal change in surface ocean pCO2, and net sea-air CO2 flux over the global oceans" [Deep Sea Res. II 56 (2009) 554-577] , 2009 .

[42]  P. Pearson,et al.  Atmospheric carbon dioxide through the Eocene–Oligocene climate transition , 2009, Nature.

[43]  P. Pearson,et al.  TAXONOMY AND STABLE ISOTOPE PALEOECOLOGY OF WELL-PRESERVED PLANKTONIC FORAMINIFERA FROM THE UPPERMOST OLIGOCENE OF TRINIDAD , 2009 .

[44]  C. S. Wong,et al.  Climatological mean and decadal change in surface ocean pCO2, and net seaair CO2 flux over the global oceans , 2009 .

[45]  David Pollard,et al.  Modelling West Antarctic ice sheet growth and collapse through the past five million years , 2009, Nature.

[46]  Caroline H. Lear,et al.  Thresholds for Cenozoic bipolar glaciation , 2008, Nature.

[47]  G. Foster Seawater pH, pCO2 and [CO2−3] variations in the Caribbean Sea over the last 130 kyr: A boron isotope and B/Ca study of planktic foraminifera , 2008 .

[48]  Gerald R. Dickens,et al.  An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics , 2008, Nature.

[49]  D. Dilcher,et al.  The impact of Miocene atmospheric carbon dioxide fluctuations on climate and the evolution of terrestrial ecosystems , 2008, Proceedings of the National Academy of Sciences.

[50]  P. Sexton,et al.  No extreme bipolar glaciation during the main Eocene calcite compensation shift , 2007, Nature.

[51]  Theodore C. Moore,et al.  Late Oligocene initiation of the Antarctic Circumpolar Current: evidence from the South Pacific , 2007 .

[52]  Heiko Pälike,et al.  The Heartbeat of the Oligocene Climate System , 2006, Science.

[53]  Heiko Pälike,et al.  Extended orbitally forced palaeoclimatic records from the equatorial Atlantic Ceara Rise , 2006 .

[54]  A. J. Kaufman,et al.  Experimental measurement of boron isotope fractionation in seawater , 2006 .

[55]  J. Zachos,et al.  Marked Decline in Atmospheric Carbon Dioxide Concentrations During the Paleogene , 2005, Science.

[56]  I. N. McCave,et al.  Evidence for late Oligocene establishment of the Antarctic Circumpolar Current [rapid communication] , 2005 .

[57]  R. DeConto,et al.  Hysteresis in Cenozoic Antarctic ice-sheet variations , 2005 .

[58]  Jacques Laskar,et al.  A long-term numerical solution for the insolation quantities of the Earth , 2004 .

[59]  Caroline H. Lear,et al.  Late Eocene to early Miocene ice sheet dynamics and the global carbon cycle , 2004 .

[60]  R. DeConto,et al.  A coupled climate–ice sheet modeling approach to the Early Cenozoic history of the Antarctic ice sheet , 2003 .

[61]  H. Elderfield,et al.  A study of cleaning procedures used for foraminiferal Mg/Ca paleothermometry , 2003 .

[62]  B. Hönisch,et al.  The influence of symbiont photosynthesis on the boron isotopic composition of foraminifera shells. , 2003 .

[63]  D. Wolf-Gladrow,et al.  Vital effects in foraminifera do not compromise the use of δ11B as a paleo‐pH indicator: Evidence from modeling , 2003 .

[64]  Henry Elderfield,et al.  Calibration of Mg/Ca thermometry in planktonic foraminifera from a sediment trap time series , 2003 .

[65]  J. Horita,et al.  Chemical evolution of seawater during the Phanerozoic: Implications from the record of marine evaporites , 2002 .

[66]  K. Miller,et al.  Calibration between eustatic estimates from backstripping and oxygen isotopic records for the Oligocene , 2002 .

[67]  A. Roberts,et al.  Orbitally induced oscillations in the East Antarctic ice sheet at the Oligocene/Miocene boundary , 2001, Nature.

[68]  D. Lea,et al.  Empirical relationship between pH and the boron isotopic composition of Globigerinoides sacculifer: Implications for the boron isotope paleo-pH proxy. , 2001 .

[69]  L. Sloan,et al.  Trends, Rhythms, and Aberrations in Global Climate 65 Ma to Present , 2001, Science.

[70]  J. Zachos,et al.  Climate Response to Orbital Forcing Across the Oligocene-Miocene Boundary , 2001, Science.

[71]  D. Lemarchand,et al.  The influence of rivers on marine boron isotopes and implications for reconstructing past ocean pH , 2000, Nature.

[72]  Aradhna K. Tripati,et al.  Orbitally Induced Climate and Geochemical Variability Across the Oligocene/Miocene Boundary , 2000 .

[73]  P. Pearson,et al.  Atmospheric carbon dioxide concentrations over the past 60 million years , 2000, Nature.

[74]  Reiner Schlitzer,et al.  Electronic atlas of WOCE hdrographic and tracer data now available , 2000 .

[75]  Pearson,et al.  Reconstructing past ocean pH-depth profiles , 1998, Science.

[76]  James C. Zachos,et al.  Orbitally paced climate oscillations across the Oligocene/Miocene boundary , 1997, Nature.

[77]  H. Elderfield,et al.  Variations in Mg/Ca and Sr/Ca ratios of planktonic foraminifera caused by postdepositional dissolution: Evidence of shallow Mg‐dependent dissolution , 1996 .

[78]  James D. Wright,et al.  Unlocking the Ice House: Oligocene‐Miocene oxygen isotopes, eustasy, and margin erosion , 1991 .

[79]  E. Boyle,et al.  Li, Sr, Mg, and Na in foraminiferal calcite shells from laboratory culture, sediment traps, and sediment cores , 1985 .

[80]  A. Sluijs,et al.  Global change across the Oligocene-Miocene transition : High-resolution stable isotope records from IODP Site U1334 (equatorial Pacific Ocean) , 2016 .

[81]  E. T. Gray Geologic Time Scale 2012 , 2012 .

[82]  Andrew J. Watson,et al.  Corrigendum to Climatological mean and decadal change in surface ocean pCO2, and net sea―air CO2 flux over the global oceans , 2009 .

[83]  H. Dijkstra Antarctic Circumpolar Current , 2008 .

[84]  Caroline H. Lear,et al.  Rapid stepwise onset of Antarctic glaciation and deeper calcite compensation in the Pacific Ocean , 2005, Nature.

[85]  P. Pearson,et al.  29. MULTISPECIES PLANKTONIC FORAMINIFER STABLE ISOTOPE STRATIGRAPHY THROUGH OLIGOCENE/MIOCENE BOUNDARY CLIMATIC CYCLES, SITE 926 1 , 1997 .