Effective numerical integration of traveling wave model for edge‐emitting broad‐area semiconductor lasers and amplifiers

Abstract We consider a system of 1 + 2 dimensional partial differential equations which describes dynamics of edge‐emitting broad area semiconductor lasers and amplifiers. The given problem is defined on the unbounded domain. After truncating this domain and defining an auxiliary 1 + 1 dimensional linear Schrodinger problem supplemented with different artificial boundary conditions, we propose an effective strategy allowing to get a solution of the full problem with a satisfactory precision in a reasonable time. For further speed up of the numerical integration, we develop a parallel version of the algorithm.

[1]  M. Pessa,et al.  State-of-the-art aluminum-free 980-nm laser diodes , 1996 .

[2]  Cun-Zheng Ning,et al.  Dynamic instabilities in master oscillator power amplifier semiconductor lasers , 1998 .

[3]  Christophe Besse,et al.  A Review of Transparent and Artificial Boundary Conditions Techniques for Linear and Nonlinear Schrödinger Equations , 2008 .

[4]  Jérémie Szeftel,et al.  Design of Absorbing Boundary Conditions for Schrödinger Equations in Rd , 2004, SIAM J. Numer. Anal..

[5]  Mindaugas Radziunas,et al.  Impact of gain dispersion on the spatio-temporal dynamics of multisection lasers , 2001 .

[6]  H. Wenzel,et al.  Measurement and Simulation of Distributed-Feedback Tapered Master-Oscillator Power Amplifiers , 2009, IEEE Journal of Quantum Electronics.

[7]  Mindaugas Radziunas,et al.  Numerical Algorithms for Schrödinger Equation with Artificial Boundary Conditions , 2009 .

[8]  S. Muller,et al.  High-power near-diffraction-limited tapered amplifiers at 1064 nm for optical intersatellite communications , 1998, IEEE Photonics Technology Letters.

[9]  R. Poprawe,et al.  Manufacturing with novel high-power diode lasers , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[10]  Mindaugas Radziunas,et al.  Parallel Numerical Algorithm for the Traveling Wave Model , 2009 .

[11]  Katrin Paschke,et al.  600 mW optical output power at 488 nm by use of a high-power hybrid laser diode system and a periodically poled MgO:LiNbO3 bulk crystal. , 2006, Optics letters.

[12]  Ivo Montrosset,et al.  Dynamic beam propagation method for flared semiconductor power amplifiers , 1996 .

[13]  Mindaugas Radziunas,et al.  Numerical algorithms for simulation of multisection lasers by using traveling wave model , 2008 .