State-of-Charge Estimation of Lithium-Ion Battery Using Multi-State Estimate Technic for Electric Vehicle Applications

For reliable and safe operation of lithium-ion batteries in electric vehicles, the monitoring of the internal states of the batteries such as state-of-charge (SOC) is necessary. The purpose of this work is to present a novel SOC estimation algorithm. In this work, an equivalent circuit model (ECM) as well as the parameter identification method are studied. Then, the model structure of the battery in the state-space form is further investigated. Based on the model structure analysis, a novel SOC estimation algorithm is proposed using multi-state technic and Extend Kalman Filter (EKF). Some improvements are then introduced to improve the convergence and tracking performance of the algorithm in electric vehicle applications. The performances of the algorithm are validated through some experiments and simulations. Validation results show that the proposed SOC estimation algorithm can achieve an acceptable accuracy with the mean error being less than 2.72%.

[1]  Weijun Gu,et al.  Online cell SOC estimation of Li-ion battery packs using a dual time-scale Kalman filtering for EV applications , 2012 .

[2]  Hongwen He,et al.  State-of-Charge Estimation of the Lithium-Ion Battery Using an Adaptive Extended Kalman Filter Based on an Improved Thevenin Model , 2011, IEEE Transactions on Vehicular Technology.

[3]  Krishna R. Pattipati,et al.  System Identification and Estimation Framework for Pivotal Automotive Battery Management System Characteristics , 2011, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[4]  Frank C. Walsh,et al.  Energy and Battery Management of a Plug-In Series Hybrid Electric Vehicle Using Fuzzy Logic , 2011, IEEE Transactions on Vehicular Technology.

[5]  Guangjun Liu,et al.  Estimation of Battery State of Charge With $H_{\infty}$ Observer: Applied to a Robot for Inspecting Power Transmission Lines , 2012, IEEE Transactions on Industrial Electronics.

[6]  Seongjun Lee,et al.  State-of-charge and capacity estimation of lithium-ion battery using a new open-circuit voltage versus state-of-charge , 2008 .

[7]  Gregory L. Plett,et al.  Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 2. Modeling and identification , 2004 .

[8]  Seongjun Lee,et al.  Discrimination of Li-ion batteries based on Hamming network using discharging–charging voltage pattern recognition for improved state-of-charge estimation , 2011 .

[9]  Gregory L. Plett,et al.  Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 3. State and parameter estimation , 2004 .

[10]  Xiaosong Hu,et al.  A comparative study of equivalent circuit models for Li-ion batteries , 2012 .