On max-k-sums

The max-k-sum of a set of real scalars is the maximum sum of a subset of size k, or alternatively the sum of the k largest elements. We study two extensions: first, we show how to obtain smooth approximations to functions that are pointwise max-k-sums of smooth functions. Second, we discuss how the max-k-sum can be defined on vectors in a finite-dimensional real vector space ordered by a closed convex cone.

[1]  Weijie J. Su,et al.  Statistical estimation and testing via the sorted L1 norm , 2013, 1310.1969.

[2]  Golbon Zakeri,et al.  Optimization of demand response through peak shaving , 2014, Oper. Res. Lett..

[3]  R. Rockafellar,et al.  Optimization of conditional value-at risk , 2000 .

[4]  R. Tyrrell Rockafellar,et al.  Convex Analysis , 1970, Princeton Landmarks in Mathematics and Physics.

[5]  Levent Tunçel,et al.  Self-Concordant Barriers for Convex Approximations of Structured Convex Sets , 2010, Found. Comput. Math..

[6]  Adam Korányi,et al.  Monotone functions on formally real Jordan algebras , 1984 .

[7]  Yurii Nesterov,et al.  Introductory Lectures on Convex Optimization - A Basic Course , 2014, Applied Optimization.

[8]  Farhad Shahrokhi,et al.  The maximum concurrent flow problem , 1990, JACM.

[9]  Yurii Nesterov,et al.  Smooth minimization of non-smooth functions , 2005, Math. Program..

[10]  J. Hiriart-Urruty,et al.  Sensitivity analysis of all eigenvalues of a symmetric matrix , 1995 .

[11]  Mário A. T. Figueiredo,et al.  Decreasing Weighted Sorted ℓ1 Regularization , 2014, ArXiv.

[12]  Xiangrong Zeng,et al.  The Ordered Weighted $\ell_1$ Norm: Atomic Formulation, Projections, and Algorithms , 2014, 1409.4271.

[13]  Peter Richtárik,et al.  Smooth minimization of nonsmooth functions with parallel coordinate descent methods , 2013, Modeling and Optimization: Theory and Applications.

[14]  Karl Löwner Über monotone Matrixfunktionen , 1934 .

[15]  Mário A. T. Figueiredo,et al.  The Ordered Weighted ℓ1 Norm: Atomic Formulation, Dual Norm, and Projections , 2014, ArXiv.

[16]  R. Rockafellar Convex Analysis: (pms-28) , 1970 .

[17]  Dimitri P. Bertsekas,et al.  Constrained Optimization and Lagrange Multiplier Methods , 1982 .

[18]  Arthur T. Benjamin,et al.  An Alternate Approach to Alternating Sums: A Method to DIE for , 2008 .

[19]  F. Murphy A Class of Exponential Penalty Functions , 1974 .

[20]  L. Faybusovich Linear systems in Jordan algebras and primal-dual interior-point algorithms , 1997 .

[21]  J. Faraut,et al.  Analysis on Symmetric Cones , 1995 .

[22]  Mário A. T. Figueiredo,et al.  Decreasing Weighted Sorted ${\ell_1}$ Regularization , 2014, IEEE Signal Processing Letters.