Boundary Treatment and Multigrid Preconditioning for Semi-Lagrangian Schemes Applied to Hamilton–Jacobi–Bellman Equations

We analyse two practical aspects that arise in the numerical solution of Hamilton–Jacobi–Bellman equations by a particular class of monotone approximation schemes known as semi-Lagrangian schemes. These schemes make use of a wide stencil to achieve convergence and result in discretization matrices that are less sparse and less local than those coming from standard finite difference schemes. This leads to computational difficulties not encountered there. In particular, we consider the overstepping of the domain boundary and analyse the accuracy and stability of stencil truncation. This truncation imposes a stricter CFL condition for explicit schemes in the vicinity of boundaries than in the interior, such that implicit schemes become attractive. We then study the use of geometric, algebraic and aggregation-based multigrid preconditioners to solve the resulting discretised systems from implicit time stepping schemes efficiently. Finally, we illustrate the performance of these techniques numerically for benchmark test cases from the literature.

[1]  Peter A. Forsyth,et al.  An unconditionally monotone numerical scheme for the two-factor uncertain volatility model , 2016 .

[2]  Kristian Debrabant,et al.  Semi-Lagrangian schemes for linear and fully non-linear diffusion equations , 2009, Math. Comput..

[3]  Xavier Warin,et al.  Some Non-monotone Schemes for Time Dependent Hamilton–Jacobi–Bellman Equations in Stochastic Control , 2013, J. Sci. Comput..

[4]  P. Vassilevski Multilevel Block Factorization Preconditioners: Matrix-based Analysis and Algorithms for Solving Finite Element Equations , 2008 .

[5]  Henk A. van der Vorst,et al.  Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..

[6]  P. Forsyth,et al.  Numerical methods for controlled Hamilton-Jacobi-Bellman PDEs in finance , 2007 .

[7]  W. Wasow,et al.  On the Approximation of Linear Elliptic Differential Equations by Difference Equations with Positive Coefficients , 1952 .

[8]  G. Barles,et al.  Convergence of approximation schemes for fully nonlinear second order equations , 1990, 29th IEEE Conference on Decision and Control.

[9]  S. Eisenstat,et al.  Variational Iterative Methods for Nonsymmetric Systems of Linear Equations , 1983 .

[10]  K. Stüben A review of algebraic multigrid , 2001 .

[11]  Maurizio Falcone,et al.  An approximation scheme for the optimal control of diffusion processes , 1995 .

[12]  Timothy A. Davis,et al.  Algorithm 832: UMFPACK V4.3---an unsymmetric-pattern multifrontal method , 2004, TOMS.

[13]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[14]  Ludmil T. Zikatanov,et al.  A multigrid method based on graph matching for convection–diffusion equations , 2003, Numer. Linear Algebra Appl..

[15]  J. Quadrat Numerical methods for stochastic control problems in continuous time , 1994 .

[16]  Justin W. L. Wan,et al.  Multigrid Methods for Second Order Hamilton-Jacobi-Bellman and Hamilton-Jacobi-Bellman-Isaacs Equations , 2013, SIAM J. Sci. Comput..

[17]  Y. Notay An aggregation-based algebraic multigrid method , 2010 .

[18]  Yvan Notay,et al.  Aggregation-Based Algebraic Multigrid for Convection-Diffusion Equations , 2012, SIAM J. Sci. Comput..

[19]  M. Akian,et al.  A finite horizon multidimensional portfolio selection problem with singular transactions , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[20]  P. Lions,et al.  Convergent difference schemes for nonlinear parabolic equations and mean curvature motion , 1996 .

[21]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[22]  Hasnaa Zidani,et al.  Some Convergence Results for Howard's Algorithm , 2009, SIAM J. Numer. Anal..

[23]  P. Lions,et al.  User’s guide to viscosity solutions of second order partial differential equations , 1992, math/9207212.

[24]  R. Hoppe Multi-grid methods for Hamilton-Jacobi-Bellman equations , 1986 .

[25]  P. Forsyth,et al.  Numerical Methods for Nonlinear PDEs in Finance , 2012 .

[26]  R. Hoppe,et al.  Numerical computation of the value function of optimally controlled stochastic switching processes by multi-grid techniques , 1989 .

[27]  P. Lions Optimal control of diffusion processes and hamilton–jacobi–bellman equations part 2 : viscosity solutions and uniqueness , 1983 .

[28]  Jose-Luis Mendali Some estimates for finite difference approximations , 1989 .

[29]  Adam M. Oberman,et al.  Convergent Difference Schemes for Degenerate Elliptic and Parabolic Equations: Hamilton-Jacobi Equations and Free Boundary Problems , 2006, SIAM J. Numer. Anal..

[30]  Yvan Notay,et al.  Recursive Krylov‐based multigrid cycles , 2008, Numer. Linear Algebra Appl..

[31]  Artem Napov,et al.  An Algebraic Multigrid Method with Guaranteed Convergence Rate , 2012, SIAM J. Sci. Comput..

[32]  A. J. Wathen,et al.  Preconditioning , 2015, Acta Numerica.

[33]  J. W. Ruge,et al.  4. Algebraic Multigrid , 1987 .