Boundary Treatment and Multigrid Preconditioning for Semi-Lagrangian Schemes Applied to Hamilton–Jacobi–Bellman Equations
暂无分享,去创建一个
[1] Peter A. Forsyth,et al. An unconditionally monotone numerical scheme for the two-factor uncertain volatility model , 2016 .
[2] Kristian Debrabant,et al. Semi-Lagrangian schemes for linear and fully non-linear diffusion equations , 2009, Math. Comput..
[3] Xavier Warin,et al. Some Non-monotone Schemes for Time Dependent Hamilton–Jacobi–Bellman Equations in Stochastic Control , 2013, J. Sci. Comput..
[4] P. Vassilevski. Multilevel Block Factorization Preconditioners: Matrix-based Analysis and Algorithms for Solving Finite Element Equations , 2008 .
[5] Henk A. van der Vorst,et al. Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..
[6] P. Forsyth,et al. Numerical methods for controlled Hamilton-Jacobi-Bellman PDEs in finance , 2007 .
[7] W. Wasow,et al. On the Approximation of Linear Elliptic Differential Equations by Difference Equations with Positive Coefficients , 1952 .
[8] G. Barles,et al. Convergence of approximation schemes for fully nonlinear second order equations , 1990, 29th IEEE Conference on Decision and Control.
[9] S. Eisenstat,et al. Variational Iterative Methods for Nonsymmetric Systems of Linear Equations , 1983 .
[10] K. Stüben. A review of algebraic multigrid , 2001 .
[11] Maurizio Falcone,et al. An approximation scheme for the optimal control of diffusion processes , 1995 .
[12] Timothy A. Davis,et al. Algorithm 832: UMFPACK V4.3---an unsymmetric-pattern multifrontal method , 2004, TOMS.
[13] Y. Saad,et al. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .
[14] Ludmil T. Zikatanov,et al. A multigrid method based on graph matching for convection–diffusion equations , 2003, Numer. Linear Algebra Appl..
[15] J. Quadrat. Numerical methods for stochastic control problems in continuous time , 1994 .
[16] Justin W. L. Wan,et al. Multigrid Methods for Second Order Hamilton-Jacobi-Bellman and Hamilton-Jacobi-Bellman-Isaacs Equations , 2013, SIAM J. Sci. Comput..
[17] Y. Notay. An aggregation-based algebraic multigrid method , 2010 .
[18] Yvan Notay,et al. Aggregation-Based Algebraic Multigrid for Convection-Diffusion Equations , 2012, SIAM J. Sci. Comput..
[19] M. Akian,et al. A finite horizon multidimensional portfolio selection problem with singular transactions , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.
[20] P. Lions,et al. Convergent difference schemes for nonlinear parabolic equations and mean curvature motion , 1996 .
[21] Yousef Saad,et al. Iterative methods for sparse linear systems , 2003 .
[22] Hasnaa Zidani,et al. Some Convergence Results for Howard's Algorithm , 2009, SIAM J. Numer. Anal..
[23] P. Lions,et al. User’s guide to viscosity solutions of second order partial differential equations , 1992, math/9207212.
[24] R. Hoppe. Multi-grid methods for Hamilton-Jacobi-Bellman equations , 1986 .
[25] P. Forsyth,et al. Numerical Methods for Nonlinear PDEs in Finance , 2012 .
[26] R. Hoppe,et al. Numerical computation of the value function of optimally controlled stochastic switching processes by multi-grid techniques , 1989 .
[27] P. Lions. Optimal control of diffusion processes and hamilton–jacobi–bellman equations part 2 : viscosity solutions and uniqueness , 1983 .
[28] Jose-Luis Mendali. Some estimates for finite difference approximations , 1989 .
[29] Adam M. Oberman,et al. Convergent Difference Schemes for Degenerate Elliptic and Parabolic Equations: Hamilton-Jacobi Equations and Free Boundary Problems , 2006, SIAM J. Numer. Anal..
[30] Yvan Notay,et al. Recursive Krylov‐based multigrid cycles , 2008, Numer. Linear Algebra Appl..
[31] Artem Napov,et al. An Algebraic Multigrid Method with Guaranteed Convergence Rate , 2012, SIAM J. Sci. Comput..
[32] A. J. Wathen,et al. Preconditioning , 2015, Acta Numerica.
[33] J. W. Ruge,et al. 4. Algebraic Multigrid , 1987 .