Si-doped GaN∕AlN quantum dot superlattices for optoelectronics at telecommunication wavelengths

We report on the controlled growth by molecular beam epitaxy of 20-period Si-doped GaN∕AlN quantum dot (QD) superlattices, in order to tailor their intraband absorption within the 1.3–1.55μm telecommunication spectral range. The QD size can be tuned by modifying the amount of GaN in the QDs, the growth temperature, or the growth interruption time (Ostwald ripening). By adjusting the growth conditions, QDs with height (diameter) within the range of 1–1.5nm (10–40nm), and density between 1011 and 1012cm−2 can be synthesized, fully strained on the AlN pseudosubstrate. To populate the first electronic level, silicon can be incorporated into the QDs without significant perturbation of the QD morphology. All the samples exhibit strong p-polarized intraband absorption at room temperature. The broadening of the absorption peak remains below 150meV and can be as small as ∼80meV. This absorption line is attributed to transition from the s ground level of the QD to the first excited level along the growth axis, pz. ...

[1]  Gerhard Abstreiter,et al.  Quantum-dot infrared photodetector with lateral carrier transport , 2001 .

[2]  Yuansha Chen,et al.  Intraband absorption in the 8–12 μm band from Si-doped vertically aligned InGaAs/GaAs quantum-dot superlattice , 1998 .

[3]  M. Segev,et al.  Mid-infrared photoconductivity in InAs quantum dots , 1997 .

[4]  Francois H. Julien,et al.  Electron confinement in strongly coupled GaN /AlN quantum wells , 2006 .

[5]  M. Lagally,et al.  Self-organization in growth of quantum dot superlattices. , 1996, Physical review letters.

[6]  Raffaele Colombelli,et al.  GaN-based quantum dot infrared photodetector operating at 1.38 /spl mu/m , 2005 .

[7]  Eoin P. O'Reilly,et al.  Optical transitions and radiative lifetime in GaN/AlN self-organized quantum dots , 2001 .

[8]  O. Ambacher,et al.  Structural and optical properties of Si-doped GaN , 2000 .

[9]  J. Neugebauer,et al.  Silicon on GaN(0001) and (0001̄) surfaces , 2001 .

[10]  Esther Baumann,et al.  High-quality AlN/GaN-superlattice structures for the fabrication of narrow-band 1.4 μm photovoltaic intersubband detectors , 2006 .

[11]  Francois H. Julien,et al.  Room temperature demonstration of GaN∕AlN quantum dot intraband infrared photodetector at fiber-optics communication wavelength , 2006 .

[12]  Kei Kaneko,et al.  Near-infrared intersubband absorption in GaN/AlN quantum wells grown by molecular beam epitaxy , 2002 .

[13]  Michel Gendry,et al.  Polarized front-illumination response in intraband quantum dot infrared photodetectors at 77 K , 2001 .

[14]  Esther Baumann,et al.  Intersubband photoconductivity at 1.6μm using a strain-compensated AlN∕GaN superlattice , 2005 .

[15]  C. H. Wang,et al.  Characteristics of InGaAs quantum dot infrared photodetectors , 1998 .

[16]  O. Brandt,et al.  Controlled n-type doping of AlN:Si films grown on 6H-SiC(0001) by plasma-assisted molecular beam epitaxy , 2005 .

[17]  E. Monroy,et al.  Modification of GaN(0001) growth kinetics by Mg doping , 2004 .

[18]  Lester F. Eastman,et al.  GaN/AlN-based quantum-well infrared photodetector for 1.55 μm , 2003 .

[19]  Eoin P. O'Reilly,et al.  Theory of the electronic structure of GaN/AlN hexagonal quantum dots , 2000 .

[20]  Jamie D. Phillips,et al.  Self-assembled InAs-GaAs quantum-dot intersubband detectors , 1999 .

[21]  G. Springholz,et al.  Oswald ripening and shape transitions of self-assembled PbSe quantum dots on PbTe (111) during annealing , 2000 .

[22]  P. P. González-Borrero,et al.  Exciton localization and temperature stability in self‐organized InAs quantum dots , 1996 .

[23]  V. Chamard,et al.  Strain distribution in nitride quantum dot multilayers , 2004 .

[24]  Yozo Shimada,et al.  Bound-to-continuum intersubband photoconductivity of self-assembled InAs quantum dots in modulation-doped heterostructures , 1999 .

[25]  Joerg Heber,et al.  Comparative study of ultrafast intersubband electron scattering times at ̃1.55 μm wavelength in GaN/AlGaN heterostructures , 2002 .

[26]  A. Andreev,et al.  Strain distribution in GaN∕AlN quantum-dot superlattices , 2005 .

[27]  Guy Feuillet,et al.  Stranski-Krastanov growth mode during the molecular beam epitaxy of highly strained GaN , 1997 .

[28]  C. Walle,et al.  Small valence-band offsets at GaN/InGaN heterojunctions , 1997 .

[29]  F. Julien,et al.  Systematic experimental and theoretical investigation of intersubband absorption in GaN/AlN quantum wells , 2006 .

[30]  Victor Ryzhii,et al.  The theory of quantum-dot infrared phototransistors , 1996 .

[31]  Elias Towe,et al.  NORMAL-INCIDENCE INTERSUBBAND (IN, GA)AS/GAAS QUANTUM DOT INFRARED PHOTODETECTORS , 1998 .

[32]  F. Julien,et al.  Observation of hot luminescence and slow inter-sub-band relaxation in Si-doped GaN∕AlxGa1−xN (x=0.11, 0.25) multi-quantum-well structures , 2006 .

[33]  Y. Aoyagi,et al.  Anti-Surfactant in III-Nitride Epitaxy –Quantum Dot Formation and Dislocation Termination– , 2000 .

[34]  C. Adelmann,et al.  Self-assembled InGaN quantum dots grown by molecular-beam epitaxy , 2000 .

[35]  L. Feldman,et al.  Clustering on surfaces , 1992 .

[36]  N. Gogneau,et al.  Effects of stacking on the structural and optical properties of self-organized GaN/AlN quantum dots , 2004 .

[37]  J. Tersoff,et al.  Coarsening of Self-Assembled Ge Quantum Dots on Si(001) , 1998 .

[38]  Raffaele Colombelli,et al.  Intraband absorption of doped GaN∕AlN quantum dots at telecommunication wavelengths , 2005 .

[39]  Michel Gendry,et al.  Quantum dot infrared photodetectors in new material systems , 2000 .

[40]  M. Nardelli,et al.  Strain effects on the interface properties of nitride semiconductors , 1997 .

[41]  Joe C. Campbell,et al.  Normal incidence InAs/AlxGa1−xAs quantum dot infrared photodetectors with undoped active region , 2001 .

[42]  P. Bhattacharya,et al.  Far-infrared photoconductivity in self-organized InAs quantum dots , 1998 .

[43]  C. Delerue,et al.  Self-consistent calculations of the optical properties of GaN quantum dots , 2003 .

[44]  Su-Huai Wei,et al.  Valence band splittings and band offsets of AlN, GaN, and InN , 1996 .

[45]  C. Adelmann,et al.  GaN islanding by spontaneous rearrangement of a strained two-dimensional layer on (0001) AlN , 2002 .

[46]  Nicolas Grandjean,et al.  Intraband absorptions in GaN/AlN quantum dots in the wavelength range of 1.27–2.4 μm , 2003 .

[47]  Claire F. Gmachl,et al.  Intersubband absorption at λ∼1.55 μm in well- and modulation-doped GaN/AlGaN multiple quantum wells with superlattice barriers , 2000 .

[48]  Katsumi Kishino,et al.  Intersubband transition in (GaN)m/(AlN)n superlattices in the wavelength range from 1.08 to 1.61 μm , 2002 .

[49]  Hadis Morkoç,et al.  Valence‐band discontinuities of wurtzite GaN, AlN, and InN heterojunctions measured by x‐ray photoemission spectroscopy , 1996 .

[50]  Tae-Kyung Yoo,et al.  Room temperature far infrared (8/spl sim/10 μm) photodetectors using self-assembled InAs quantum dots with high detectivity , 2000 .

[51]  Osamu Wada,et al.  Ultrafast intersubband relaxation (⩽150 fs) in AlGaN/GaN multiple quantum wells , 2000 .

[52]  J. Massies,et al.  Photoluminescence energy and linewidth in GaN/AlN stackings of quantum dot planes , 2004 .

[53]  A. Barabasi,et al.  Dynamics of ripening of self-assembled II-VI semiconductor quantum dots , 1998 .

[54]  Eva Monroy,et al.  Structure of GaN quantum dots grown under “modified Stranski–Krastanow” conditions on AlN , 2003 .

[55]  Guy Feuillet,et al.  Growth kinetics and optical properties of self-organized GaN quantum dots , 1998 .

[56]  M. Stutzmann,et al.  Highly Si-doped AlN grown by plasma-assisted molecular-beam epitaxy , 2005 .

[57]  Francois H. Julien,et al.  Intersubband spectroscopy of doped and undoped GaN/AlN quantum wells grown by molecular-beam epitaxy , 2003 .

[58]  S. Denbaars,et al.  Layer-by-layer growth of GaN induced by silicon , 2000 .

[59]  Y. Arakawa,et al.  Formation and optical properties of stacked GaN self-assembled quantum dots grown by metalorganic chemical vapor deposition , 2004 .

[60]  Y. Taniyasu,et al.  Electrical conduction properties of n-type Si-doped AlN with high electron mobility (>100cm2V−1s−1) , 2004 .

[61]  Drucker Coherent islands and microstructural evolution. , 1993, Physical review. B, Condensed matter.

[62]  J. Neugebauer,et al.  Adsorption and incorporation of silicon at GaN(0001) surfaces , 2002 .

[63]  R. Stanley Williams,et al.  Evolution of Ge islands on Si(001) during annealing , 1999 .

[64]  Claire F. Gmachl,et al.  Intersubband absorption in degenerately doped GaN/AlxGa1−xN coupled double quantum wells , 2001 .

[65]  B. F. Levine,et al.  Quantum‐well infrared photodetectors , 1993 .

[66]  Luminescence properties of highly Si-doped AlN , 2006 .

[67]  Joel W. Ager,et al.  Effect of Si doping on strain, cracking, and microstructure in GaN thin films grown by metalorganic chemical vapor deposition , 2000 .

[68]  Eva Monroy,et al.  Surfactant effect of In for AlGaN growth by plasma-assisted molecular beam epitaxy , 2003 .

[69]  G. A. Slack,et al.  Some effects of oxygen impurities on AlN and GaN , 2002 .

[70]  N. Gogneau,et al.  Influence of AlN overgrowth on structural properties of GaN quantum wells and quantum dots grown by plasma-assisted molecular beam epitaxy , 2004 .