A new fractional time-stepping method for variable density incompressible flows

This paper describes a new method for solving variable density incompressible viscous flows. We have dealt with the momentum equation and the divergence free constraint in a new manner by rewriting the original equations. The originality of the proposed approach is that we have used different numerical methods to evaluate the evolution of the velocity and pressure. Compared with some established methods, the proposed approach is parameter-free, more flexible and can avoid the difficulties caused by the original equations. The stability analysis of the method is performed to show that our method is stable. Finally, numerical experiments are given to show the accuracy, efficiency and validness of this method for variable density incompressible flows.

[1]  Chun Liu,et al.  Convergence of Numerical Approximations of the Incompressible Navier-Stokes Equations with Variable Density and Viscosity , 2007, SIAM J. Numer. Anal..

[2]  Abner J. Salgado,et al.  A fractional step method based on a pressure Poisson equation for incompressible flows with variable density , 2008 .

[3]  R. Temam,et al.  Navier-Stokes equations: theory and numerical analysis: R. Teman North-Holland, Amsterdam and New York. 1977. 454 pp. US $45.00 , 1978 .

[4]  P. Colella,et al.  A Conservative Adaptive Projection Method for the Variable Density Incompressible Navier-Stokes Equations , 1998 .

[5]  Rupert Klein,et al.  Regular Article: Extension of Finite Volume Compressible Flow Solvers to Multi-dimensional, Variable Density Zero Mach Number Flows , 1999 .

[6]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[7]  R. Klein,et al.  Extension of Finite Volume Compressible Flow Solvers to Multi-dimensional, Variable Density Zero Mach Number Flows , 2000 .

[8]  Lamberto Cattabriga,et al.  Su un problema al contorno relativo al sistema di equazioni di Stokes , 1961 .

[9]  Jie Shen,et al.  An overview of projection methods for incompressible flows , 2006 .

[10]  J.-L. GUERMOND,et al.  Error Analysis of a Fractional Time-Stepping Technique for Incompressible Flows with Variable Density , 2011, SIAM J. Numer. Anal..

[11]  Thomas-Peter Fries,et al.  The intrinsic XFEM for two‐fluid flows , 2009 .

[12]  G. Tryggvason Numerical simulations of the Rayleigh-Taylor instability , 1988 .

[13]  Emmanuel Creusé,et al.  An hybrid finite volume-finite element method for variable density incompressible flows , 2008, J. Comput. Phys..

[14]  A. Huerta,et al.  Implementation of a stabilized finite element formulation for the incompressible Navier–Stokes equations based on a pressure gradient projection , 2001 .

[15]  A. Chorin Numerical Solution of the Navier-Stokes Equations* , 1989 .

[16]  C. Dohrmann,et al.  A stabilized finite element method for the Stokes problem based on polynomial pressure projections , 2004 .

[17]  R. Temam Navier-Stokes Equations , 1977 .

[18]  Jean-Luc Guermond,et al.  Approximation of variable density incompressible flows by means of finite elements and finite volumes , 2001 .

[19]  J. Guermond,et al.  Theory and practice of finite elements , 2004 .

[20]  R. Temam Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires (I) , 1969 .

[21]  Jie Shen,et al.  Gauge-Uzawa methods for incompressible flows with variable density , 2007, J. Comput. Phys..

[22]  P. Lions Mathematical topics in fluid mechanics , 1996 .

[23]  E. Puckett,et al.  A High-Order Projection Method for Tracking Fluid Interfaces in Variable Density Incompressible Flows , 1997 .

[24]  L. Quartapelle,et al.  A projection FEM for variable density incompressible flows , 2000 .

[25]  W. Wall,et al.  An extended residual-based variational multiscale method for two-phase flow including surface tension , 2011 .

[26]  J. Bell,et al.  A Second-Order Projection Method for Variable- Density Flows* , 1992 .

[27]  Yinnian He,et al.  Convergence of three iterative methods based on the finite element discretization for the stationary Navier–Stokes equations☆ , 2009 .

[28]  Ramon Codina,et al.  Fourier analysis of an equal‐order incompressible flow solver stabilized by pressure gradient projection , 2000 .

[29]  R. Temam Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires (II) , 1969 .

[30]  Abner J. Salgado,et al.  A splitting method for incompressible flows with variable density based on a pressure Poisson equation , 2009, J. Comput. Phys..

[31]  Alexandre Joel Chorin,et al.  On the Convergence of Discrete Approximations to the Navier-Stokes Equations* , 1989 .