A new fractional time-stepping method for variable density incompressible flows
暂无分享,去创建一个
Ying Li | Liquan Mei | Feng Shi | Jiatai Ge | Liquan Mei | F. Shi | J. Ge | Ying Li
[1] Chun Liu,et al. Convergence of Numerical Approximations of the Incompressible Navier-Stokes Equations with Variable Density and Viscosity , 2007, SIAM J. Numer. Anal..
[2] Abner J. Salgado,et al. A fractional step method based on a pressure Poisson equation for incompressible flows with variable density , 2008 .
[3] R. Temam,et al. Navier-Stokes equations: theory and numerical analysis: R. Teman North-Holland, Amsterdam and New York. 1977. 454 pp. US $45.00 , 1978 .
[4] P. Colella,et al. A Conservative Adaptive Projection Method for the Variable Density Incompressible Navier-Stokes Equations , 1998 .
[5] Rupert Klein,et al. Regular Article: Extension of Finite Volume Compressible Flow Solvers to Multi-dimensional, Variable Density Zero Mach Number Flows , 1999 .
[6] Vivette Girault,et al. Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.
[7] R. Klein,et al. Extension of Finite Volume Compressible Flow Solvers to Multi-dimensional, Variable Density Zero Mach Number Flows , 2000 .
[8] Lamberto Cattabriga,et al. Su un problema al contorno relativo al sistema di equazioni di Stokes , 1961 .
[9] Jie Shen,et al. An overview of projection methods for incompressible flows , 2006 .
[10] J.-L. GUERMOND,et al. Error Analysis of a Fractional Time-Stepping Technique for Incompressible Flows with Variable Density , 2011, SIAM J. Numer. Anal..
[11] Thomas-Peter Fries,et al. The intrinsic XFEM for two‐fluid flows , 2009 .
[12] G. Tryggvason. Numerical simulations of the Rayleigh-Taylor instability , 1988 .
[13] Emmanuel Creusé,et al. An hybrid finite volume-finite element method for variable density incompressible flows , 2008, J. Comput. Phys..
[14] A. Huerta,et al. Implementation of a stabilized finite element formulation for the incompressible Navier–Stokes equations based on a pressure gradient projection , 2001 .
[15] A. Chorin. Numerical Solution of the Navier-Stokes Equations* , 1989 .
[16] C. Dohrmann,et al. A stabilized finite element method for the Stokes problem based on polynomial pressure projections , 2004 .
[17] R. Temam. Navier-Stokes Equations , 1977 .
[18] Jean-Luc Guermond,et al. Approximation of variable density incompressible flows by means of finite elements and finite volumes , 2001 .
[19] J. Guermond,et al. Theory and practice of finite elements , 2004 .
[20] R. Temam. Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires (I) , 1969 .
[21] Jie Shen,et al. Gauge-Uzawa methods for incompressible flows with variable density , 2007, J. Comput. Phys..
[22] P. Lions. Mathematical topics in fluid mechanics , 1996 .
[23] E. Puckett,et al. A High-Order Projection Method for Tracking Fluid Interfaces in Variable Density Incompressible Flows , 1997 .
[24] L. Quartapelle,et al. A projection FEM for variable density incompressible flows , 2000 .
[25] W. Wall,et al. An extended residual-based variational multiscale method for two-phase flow including surface tension , 2011 .
[26] J. Bell,et al. A Second-Order Projection Method for Variable- Density Flows* , 1992 .
[27] Yinnian He,et al. Convergence of three iterative methods based on the finite element discretization for the stationary Navier–Stokes equations☆ , 2009 .
[28] Ramon Codina,et al. Fourier analysis of an equal‐order incompressible flow solver stabilized by pressure gradient projection , 2000 .
[29] R. Temam. Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires (II) , 1969 .
[30] Abner J. Salgado,et al. A splitting method for incompressible flows with variable density based on a pressure Poisson equation , 2009, J. Comput. Phys..
[31] Alexandre Joel Chorin,et al. On the Convergence of Discrete Approximations to the Navier-Stokes Equations* , 1989 .