Proposal of a modeling approach considering urban form for evaluation of city level energy management

The importance of developing a method to bridge the gap between the current increasing trend of CO2 emission from the commercial sector and the reduced emission level for ensuring long-term sustainability has increased. Various concepts exist for managing the energy use and CO2 emission. These concepts can be categorized into advancement in technologies, dissemination of energy saving measures in buildings, optimization of local energy generation and distribution systems, spatial building stock pattern management, and improvement in CO2 emission factor of the grid electricity. In this paper, we propose a modeling approach for energy use in the commercial sector in order to evaluate the options involved in the abovementioned energy management concepts in an integrated manner. In this modeling approach, a district is dealt with as a basic unit. Districts are first classified into several categories according to the spatial building stock pattern, or urban form. The end-use energy consumption per unit floor area is then calculated for each district category using a simulation of energy use in buildings in a representative district; this is used for quantifying the total end-use energy consumption at the municipal level. We carried out a case study in order to demonstrate the simulation capabilities and features of the suggested modeling approach in contrast with the conventional modeling approaches. In this case study, certain scenarios of CO2 abatement integrating the energy management concepts are applied in the commercial sector of Osaka city, Japan, in order to investigate alternative avenues toward which policy efforts must be directed.