Ab initio energetics of charge compensating point defects: A case study on MgO

[1]  E. Ito,et al.  Ultrahigh‐Pressure Phase Transformations and the Constitution of the Deep Mantle , 2013 .

[2]  D. Morgan,et al.  Effects of spin transition on diffusion of Fe2+in ferropericlase in Earth's lower mantle , 2011 .

[3]  Dane Morgan,et al.  Ab initio energetics of LaBO3(001) (B=Mn, Fe, Co, and Ni) for solid oxide fuel cell cathodes , 2009 .

[4]  Alex Zunger,et al.  Accurate prediction of defect properties in density functional supercell calculations , 2009 .

[5]  R. Nieminen Issues in first-principles calculations for defects in semiconductors and oxides , 2009 .

[6]  Andreas Höglund,et al.  Density functional theory calculations of defect energies using supercells , 2009 .

[7]  M. Finnis,et al.  Energetics of charged point defects in rutile TiO2 by density functional theory , 2009 .

[8]  Biao Wang,et al.  First-principles study on energetics of intrinsic point defects in LaAlO 3 , 2009 .

[9]  J. Maier,et al.  Atomic, electronic and thermodynamic properties of cubic and orthorhombic LaMnO3 surfaces , 2009 .

[10]  C. Freysoldt,et al.  Fully ab initio finite-size corrections for charged-defect supercell calculations. , 2009, Physical review letters.

[11]  Alex Zunger,et al.  Assessment of correction methods for the band-gap problem and for finite-size effects in supercell defect calculations: Case studies for ZnO and GaAs , 2008 .

[12]  M. Falk,et al.  Elastic effects on relaxation volume tensor calculations , 2008, 0802.1300.

[13]  E. Sanville,et al.  Ab initio study of point defects in magnesium oxide , 2007 .

[14]  A. Janotti,et al.  Native point defects in ZnO , 2007 .

[15]  Elizabeth C. Dickey,et al.  Prediction of high-temperature point defect formation in TiO2 from combined ab initio and thermodynamic calculations , 2007 .

[16]  E. Heifets,et al.  Density functional simulation of the BaZrO3 (011) surface structure , 2007 .

[17]  N. Modine,et al.  Comparison of two methods for circumventing the Coulomb divergence in supercell calculations for charged point defects , 2006 .

[18]  C. Castleton,et al.  Managing the supercell approximation for charged defects in semiconductors: Finite-size scaling, charge correction factors, the band-gap problem, and the ab initio dielectric constant , 2006 .

[19]  M. Falk,et al.  The continuum elastic and atomistic viewpoints on the formation volume and strain energy of a point defect , 2005, cond-mat/0508169.

[20]  D. Alfé,et al.  Schottky defect formation energy in MgO calculated by diffusion Monte Carlo , 2005, cond-mat/0503074.

[21]  R. Nieminen,et al.  Density-functional calculations of defect formation energies using supercell methods: Defects in diamond , 2005 .

[22]  Kth,et al.  Finite-size scaling as a cure for supercell approximation errors in calculations of neutral native defects in InP , 2004, cond-mat/0512306.

[23]  M. Finnis,et al.  SrTiO3 (001) (2x1) reconstructions: first-principles calculations of surface energy and atomic structure compared with scanning tunnelling microscopy images , 2004 .

[24]  C. Walle,et al.  First-principles calculations for defects and impurities: Applications to III-nitrides , 2004 .

[25]  C. Castleton,et al.  Ab initio study of neutral vacancies in InP using supercells and finite size scaling , 2003 .

[26]  U. Gerstmann,et al.  Charge corrections for supercell calculations of defects in semiconductors , 2003 .

[27]  M. Payne,et al.  Improving the convergence of defect calculations in supercells - an ab initio study of the neutral silicon vacancy , 2003, cond-mat/0301146.

[28]  Y. Fei,et al.  Diffusion in MgO at high pressures: Constraints on deformation mechanisms and chemical transport at the core‐mantle boundary , 2003 .

[29]  R. Nieminen,et al.  Charged point defects in semiconductors and the supercell approximation , 2002 .

[30]  G. Ceder,et al.  First-principles study of native point defects in ZnO , 2000 .

[31]  Schultz,et al.  Charged local defects in extended systems , 2000, Physical review letters.

[32]  A. Zunger,et al.  First-principles calculation of band offsets, optical bowings, and defects in CdS, CdSe, CdTe, and their alloys , 2000 .

[33]  P. Schultz Local electrostatic moments and periodic boundary conditions , 1999 .

[34]  Y. Murti,et al.  Schottky defect enthalpies of alkaline earth oxides , 1999 .

[35]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[36]  Graeme Ackland,et al.  Computer simulation of point defect properties in dilute Fe—Cu alloy using a many-body interatomic potential , 1997 .

[37]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[38]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[39]  Payne,et al.  Periodic boundary conditions in ab initio calculations. , 1995, Physical review. B, Condensed matter.

[40]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[41]  Lin,et al.  Defect energetics in MgO treated by first-principles methods. , 1992, Physical review. B, Condensed matter.

[42]  Lin,et al.  Defect energetics in oxide materials from first principles. , 1992, Physical review letters.

[43]  Yimei Zhu,et al.  Defects in High T_c Cuprate Superconductors , 1991 .

[44]  Zhang,et al.  Chemical potential dependence of defect formation energies in GaAs: Application to Ga self-diffusion. , 1991, Physical review letters.

[45]  M Leslie,et al.  The energy and elastic dipole tensor of defects in ionic crystals calculated by the supercell method , 1985 .

[46]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[47]  B. C. Harding The energy of formation of a Schottky defect in MgO , 1972 .

[48]  B. C. Harding,et al.  Cation self-diffusion in MgO up to 2350°c , 1972 .

[49]  I. Boswarva Further calculations of the energies of formation of Schottky defects in NaCl structure ionic crystals , 1972 .

[50]  C. Osburn,et al.  Electrical Properties of Single Crystals, Bicrystals, and Polycrystals of MgO , 1971 .

[51]  G. Stavropoulos,et al.  Ionic Transport Numbers of Group IIa Oxides Under Low Oxygen Potentials , 1971 .

[52]  J. Orman,et al.  Diffusion in Oxides , 1968 .

[53]  J. Yamashita,et al.  Formation Energy of Lattice Defect in Simple Oxide Crystals , 1954 .

[54]  Nicholas D. M. Hine,et al.  Supercell size scaling of density functional theory formation energies of charged defects , 2009 .

[55]  J. Orman,et al.  Aluminum diffusion and Al-vacancy association in periclase , 2009 .

[56]  Y. Chang,et al.  Experimental investigation and thermodynamic modeling of the Ni–Al–Ru ternary system , 2009 .