Two-step milling on the carbonyl iron particles and optimizing on the composite absorption

[1]  X. Chang,et al.  Microwave absorbing properties and enhanced infrared reflectance of FeAl mixture synthesized by two-step ball-milling method , 2015 .

[2]  P. Zhou,et al.  Extrinsic permeability of Fe-based flake composites from intrinsic parameters: A comparison between the aligned and random cases , 2012 .

[3]  T. Qiu,et al.  Synthesis, characterization, and microwave absorption properties of Fe–40 wt%Ni alloy prepared by mechanical alloying and annealing , 2011 .

[4]  R. Wu,et al.  Frequency dispersive complex permittivity and permeability of ferromagnetic metallic granular composite at microwave frequencies , 2011 .

[5]  Joaquim Jose Barroso,et al.  Modified Nicolson-Ross-Weir (NRW) method to retrieve the constitutive parameters of low-loss materials , 2011, 2011 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC 2011).

[6]  Y. Haibo,et al.  High-frequency magnetic properties of carbonyl-iron particles/paraffin composite , 2010, CSB 2010.

[7]  Yuping Duan,et al.  Microwave absorption properties of one thin sheet employing carbonyl–iron powder and chlorinated polyethylene , 2010 .

[8]  Davide Micheli,et al.  X-Band microwave characterization of carbon-based nanocomposite material, absorption capability comparison and RAS design simulation , 2010 .

[9]  Nan Wang,et al.  Microwave-absorbing properties of shape-optimized carbonyl iron particles with maximum microwave permeability , 2009 .

[10]  Iosif D. Rosca,et al.  Highly conductive multiwall carbon nanotube and epoxy composites produced by three-roll milling , 2009 .

[11]  F. Wen,et al.  Bianisotropy Picture of Higher Permeability at Higher Frequencies , 2008 .

[12]  H. Hahn,et al.  Microwave properties of graphite nanoplatelet/epoxy composites , 2008 .

[13]  J. Xiong,et al.  Microwave-absorbing properties of de-aggregated flake-shaped carbonyl-iron particle composites at 2-18 GHz , 2006 .

[14]  Jiurong Liu,et al.  Electromagnetic wave absorption properties of nanocomposite powders derived from intermetallic compounds and amorphous carbon , 2006 .

[15]  Fan Yang,et al.  Complex permittivity and permeability of metallic magnetic granular composites at microwave frequencies , 2005 .

[16]  T. Gilbert A phenomenological theory of damping in ferromagnetic materials , 2004, IEEE Transactions on Magnetics.

[17]  Milo S. P. Shaffer,et al.  Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties , 1999 .

[18]  C. L. Fur,et al.  Permeability mechanisms in high frequency polycrystalline ferrites , 1996 .

[19]  J. L. Wallace,et al.  Broadband magnetic microwave absorbers: fundamental limitations , 1993 .

[20]  J. L. Snoek Dispersion and absorption in magnetic ferrites at frequencies above one Mc/s , 1948 .

[21]  Sotirios K. Goudos,et al.  A versatile software tool for microwave planar radar absorbing materials design using global optimization algorithms , 2007 .

[22]  Xiao Gang,et al.  A novel method of computation and optimization for multi-layered radar absorbing coatings using open source software , 2006 .

[23]  Jun Ding,et al.  Particle size influence to the microwave properties of iron based magnetic particulate composites , 2005 .