Magnetic nanoparticles catalyzed synthesis of diverse N-Heterocycles

[1]  R. Rodriguez Target‐Oriented and Diversity‐Oriented Organic Synthesis , 2012 .

[2]  N. Mishra,et al.  Application of mobilized Cu-nanoparticles as heterogeneous catalyst for the synthesis of α-amino phosphonatesviaA2-P coupling , 2011 .

[3]  M. Kidwai,et al.  Zn[(l)proline]2 in water: A new easily accessible and recyclable catalytic system for the synthesis of pyrazoles , 2011 .

[4]  M. Kidwai,et al.  Bis[(L)prolinato-N,O]Zn in acetic acid–water: a novel catalytic system for the synthesis of β-amino carbonyls via Mannich reaction at room temperature , 2011 .

[5]  M. Kidwai,et al.  1, 4-Addition of Terminal Alkynes to Conjugated Enones in Water Using Green Catalyst Bis[(l)prolinato-N,O]Zn—An Environmentally Benign Protocol , 2011 .

[6]  Chao‐Jun Li,et al.  Fe3O4 Nanoparticles: A Robust and Magnetically Recoverable Catalyst for Three-Component Coupling of Aldehyde, Alkyne and Amine. , 2010 .

[7]  Chao‐Jun Li,et al.  Fe3O4 nanoparticles: a robust and magnetically recoverable catalyst for three-component coupling of aldehyde, alkyne and amine , 2010 .

[8]  D. Shi,et al.  Efficient one-pot synthesis of spirooxindole derivatives catalyzed by L-proline in aqueous medium. , 2010, Journal of combinatorial chemistry.

[9]  M. M. Mojtahedi,et al.  Superparamagnetic iron oxide as an efficient catalyst for the one-pot, solvent-free synthesis of α-aminonitriles , 2009 .

[10]  R. Varma,et al.  Nanoparticle-supported and magnetically recoverable nickel catalyst: a robust and economic hydrogenation and transfer hydrogenation protocol , 2009 .

[11]  H. Bijanzadeh,et al.  Diammonium hydrogen phosphate as a versatile and efficient catalyst for the one-pot synthesis of pyrano[2,3-d]pyrimidinone derivatives in aqueous media , 2008, Molecular Diversity.

[12]  S. Ji,et al.  A Simple and Clean Procedure for Three‐Component Synthesis of Spirooxindoles in Aqueous Medium. , 2007 .

[13]  K. Scheidt,et al.  Pyrrolidinyl-spirooxindole natural products as inspirations for the development of potential therapeutic agents. , 2007, Angewandte Chemie.

[14]  S. Ji,et al.  A simple and clean procedure for three-component synthesis of spirooxindoles in aqueous medium , 2007 .

[15]  P. T. Perumal,et al.  A New InCl3-Catalyzed, Facile and Efficient Method for the Synthesis of Spirooxindoles under Conventional and Solvent-Free Microwave Conditions. , 2007 .

[16]  P. T. Perumal,et al.  A new InCl3-catalyzed, facile and efficient method for the synthesis of spirooxindoles under conventional and solvent-free microwave conditions , 2007 .

[17]  Han-qing Wang,et al.  Green Synthesis of Pyrano[2,3-d]pyrimidine Derivatives in Ionic Liquids. , 2006 .

[18]  Alexander Dömling,et al.  Recent developments in isocyanide based multicomponent reactions in applied chemistry. , 2006, Chemical reviews.

[19]  Han-qing Wang,et al.  Green Synthesis of Pyrano[2,3‐d]‐pyrimidine Derivatives in Ionic Liquids , 2005 .

[20]  D. Shi,et al.  Effective Synthesis of 7‐Amino‐6‐cyano‐5‐aryl‐5H‐pyrano[2,3‐d]pyrimidine‐2,4(1H,3H)‐diones Under Microwave Irradiation , 2004 .

[21]  H. Toma,et al.  Preparation and characterization of (3-aminopropyl) triethoxysilane-coated magnetite nanoparticles , 2004 .

[22]  P. Bhuyan,et al.  A novel three-component one-pot synthesis of pyrano[2,3-d]pyrimidines and pyrido[2,3-d]pyrimidines using microwave heating in the solid state , 2003 .

[23]  Ralph Weissleder,et al.  Viral-induced self-assembly of magnetic nanoparticles allows the detection of viral particles in biological media. , 2003, Journal of the American Chemical Society.

[24]  Q. Pankhurst,et al.  TOPICAL REVIEW: Applications of magnetic nanoparticles in biomedicine , 2003 .

[25]  C. Bárcena,et al.  APPLICATIONS OF MAGNETIC NANOPARTICLES IN BIOMEDICINE , 2003 .

[26]  Robert M. Williams,et al.  Paraherquamides, brevianamides, and asperparalines: laboratory synthesis and biosynthesis. An interim report. , 2003, Accounts of chemical research.

[27]  S. Schreiber,et al.  Target-oriented and diversity-oriented organic synthesis in drug discovery. , 2000, Science.

[28]  M. Ghorab,et al.  SYNTHESIS AND ANTIBACTERIAL PROPERTIES OF NEW DITHIENYL CONTAINING PYRAN, PYRANO[2,3-b] PYRIDINE, PYRANO[2,3-d]PYRIMIDINE AND PYRIDINE DERIVATIVES , 1998 .

[29]  L. Tietze Domino Reactions in Organic Synthesis. , 1996, Chemical reviews.

[30]  U. Ravens,et al.  Positive inotropic activity of 5-amino-6-cyano-1,3-dimethyl-1,2,3,4-tetrahydropyrido[2,3-d]pyrim idine-2,4-dione in cardiac muscle from guinea-pig and man. Part 6: Compounds with positive inotropic activity. , 1993, Die Pharmazie.

[31]  D. Freidel,et al.  An interim report , 1986 .

[32]  S. Lee,et al.  Synthesis and antitumor activity of 2,4-diamino-6-(2,5-dimethoxybenzyl)-5-methylpyrido[2,3-d]pyrimidine. , 1980, Journal of medicinal chemistry.

[33]  E. Elslager,et al.  Folate antagonists. 4. Antimalarial and antimetabolite effects of 2,4-diamino-6-((benzyl)amino)pyrido(2,3-d)-pyrimidines. , 1972, Journal of medicinal chemistry.