Ubiquitous Parallel Computing from Berkeley, Illinois, and Stanford

The ParLab at Berkeley, UPCRC-Illinois, and the Pervasive Parallel Laboratory at Stanford are studying how to make parallel programming succeed given industry's recent shift to multicore computing. All three centers assume that future microprocessors will have hundreds of cores and are working on applications, programming environments, and architectures that will meet this challenge. This article briefly surveys the similarities and difference in their research.

[1]  Paul Hudak,et al.  An Experiment in Software Prototyping Productivity , 1994 .

[2]  Lutz Prechelt,et al.  An Empirical Comparison of Seven Programming Languages , 2000, Computer.

[3]  David A. Padua,et al.  Programming for parallelism and locality with hierarchically tiled arrays , 2006, PPoPP '06.

[4]  David Geer Will software developers ride Ruby on Rails to success? , 2006, Computer.

[5]  Alex Pentland,et al.  Human computing and machine understanding of human behavior: a survey , 2006, ICMI '06.

[6]  William J. Dally,et al.  Sequoia: Programming the Memory Hierarchy , 2006, International Conference on Software Composition.

[7]  Samuel T. King,et al.  Secure Web Browsing with the OP Web Browser , 2008, 2008 IEEE Symposium on Security and Privacy (sp 2008).

[8]  David Gay,et al.  Effective static deadlock detection , 2009, 2009 IEEE 31st International Conference on Software Engineering.

[9]  Quang Nguyen,et al.  The parallelization of video processing , 2009, IEEE Signal Processing Magazine.

[10]  David A. Patterson,et al.  Virtual Local Stores: Enabling Software-Managed Memory Hierarchies in Mainstream Computing Environments , 2009 .

[11]  Randy H. Katz,et al.  Above the Clouds: A Berkeley View of Cloud Computing , 2009 .

[12]  Francesco Sorrentino,et al.  Meta-analysis for Atomicity Violations under Nested Locking , 2009, CAV.

[13]  Sanjay J. Patel,et al.  Rigel: an architecture and scalable programming interface for a 1000-core accelerator , 2009, ISCA '09.

[14]  James Demmel,et al.  the Parallel Computing Landscape , 2022 .

[15]  Pablo Arbeláez,et al.  Recognition using regions , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[16]  Kurt Keutzer,et al.  Efficient, high-quality image contour detection , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[17]  K. Datta,et al.  A case for machine learning to optimize multicore performance , 2009 .

[18]  David A. Forsyth,et al.  Generalizing motion edits with Gaussian processes , 2009, ACM Trans. Graph..

[19]  Sarita V. Adve,et al.  Memory models: a case for rethinking parallel languages and hardware , 2009, PODC '09.

[20]  P. Hanrahan,et al.  GRAMPS: A programming model for graphics pipelines , 2009, ACM Trans. Graph..

[21]  Sarita V. Adve,et al.  Parallel programming must be deterministic by default , 2009 .

[22]  Klara Nahrstedt,et al.  MobileTI: a portable tele-immersive system , 2009, ACM Multimedia.

[23]  Leo A. Meyerovich,et al.  Parallelizing the web browser , 2009 .

[24]  Jeffrey Overbey,et al.  A type and effect system for deterministic parallel Java , 2009, OOPSLA 2009.

[25]  Ralph E. Johnson,et al.  Relooper: refactoring for loop parallelism in Java , 2009, OOPSLA Companion.

[26]  Kevin Klues,et al.  Tessellation: space-time partitioning in a manycore client OS , 2009 .

[27]  Benjamin Hindman,et al.  Lithe: enabling efficient composition of parallel libraries , 2009 .

[28]  Josep Torrellas,et al.  Light64: Lightweight hardware support for data race detection during Systematic Testing of parallel programs , 2009, 2009 42nd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO).

[29]  K. Keutzer,et al.  Our Pattern Language ( OPL ) : A Design Pattern Language for Engineering ( Parallel ) Software , 2009 .

[30]  Jeffrey Overbey,et al.  Inferring Method Effect Summaries for Nested Heap Regions , 2009, 2009 IEEE/ACM International Conference on Automated Software Engineering.

[31]  Josep Torrellas,et al.  The Bulk Multicore architecture for improved programmability , 2009, Commun. ACM.

[32]  John Shalf,et al.  SEJITS: Getting Productivity and Performance With Selective Embedded JIT Specialization , 2010 .

[33]  David A. Patterson Software knows best: portable parallelism requires standardized measurements of transparent hardware , 2010, WOSP/SIPEW '10.

[34]  David A. Patterson,et al.  A case for FAME: FPGA architecture model execution , 2010, ISCA.

[35]  Christoforos E. Kozyrakis,et al.  Flexible architectural support for fine-grain scheduling , 2010, ASPLOS XV.

[36]  Kunle Olukotun,et al.  A practical concurrent binary search tree , 2010, PPoPP '10.

[37]  Randy H. Katz,et al.  A view of cloud computing , 2010, CACM.