Membranes and microfluidics: a review.

The integration of mass transport control by means of membrane functionality into microfluidic devices has shown substantial growth over the last 10 years. Many different examples of mass transport control have been reported, demonstrating the versatile use of membranes. This review provides an overview of the developments in this area of research. Furthermore, it aims to bridge the fields of microfabrication and membrane science from a membrane point-of-view. First the basic terminology of membrane science will be discussed. Then the integration of membrane characteristics on-chip will be categorized based on the used fabrication method. Subsequently, applications in various fields will be reviewed. Considerations for the use of membranes will be discussed and a checklist with selection criteria will be provided that can serve as a starting point for those researchers interested in applying membrane-technology on-chip. Finally, opportunities for microfluidics based on proven membrane technology will be outlined. A special focus in this review is made on the membrane properties of polydimethylsiloxane (PDMS), since this material is frequently used nowadays in master replication.

[1]  S. Quake,et al.  Monolithic microfabricated valves and pumps by multilayer soft lithography. , 2000, Science.

[2]  Jamie M. Iannacone,et al.  A multilayer poly(dimethylsiloxane) electrospray ionization emitter for sample injection and online mass spectrometric detection , 2005, Electrophoresis.

[3]  Tatsuo Maruyama,et al.  Liquid membrane operations in a microfluidic device for selective separation of metal ions. , 2004, Analytical chemistry.

[4]  J. Eijkel,et al.  Osmosis and pervaporation in polyimide submicron microfluidic channel structures , 2005 .

[5]  A. Pisano,et al.  Water-powered, osmotic microactuator , 2001, Technical Digest. MEMS 2001. 14th IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.01CH37090).

[6]  Ralph G Nuzzo,et al.  Microfluidic devices for energy conversion: planar integration and performance of a passive, fully immersed H2-O2 fuel cell. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[7]  Joung-Hwan Cho,et al.  Functional membrane-implanted lab-on-a-chip for analysis of percent HDL cholesterol. , 2005, Analytical chemistry.

[8]  Jtf Jos Keurentjes,et al.  Microsystem technology for high-flux hydrogen separation membranes , 2004 .

[9]  David J. Beebe,et al.  Insect Cell Culture in Microfluidic Channels , 2002 .

[10]  D. DeVoe,et al.  Integration of polymeric membranes with microfluidic networks for bioanalytical applications , 2001, Electrophoresis.

[11]  Robert S Foote,et al.  Preconcentration of proteins on microfluidic devices using porous silica membranes. , 2005, Analytical chemistry.

[12]  Jonathan V Sweedler,et al.  Microfluidic separation and gateable fraction collection for mass-limited samples. , 2004, Analytical chemistry.

[13]  Shoji Takeuchi,et al.  Highly reproducible method of planar lipid bilayer reconstitution in polymethyl methacrylate microfluidic chip. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[14]  Jason P. Gleghorn,et al.  A microfluidic biomaterial. , 2005, Journal of the American Chemical Society.

[15]  S. Ostrovidov,et al.  Membrane-Based PDMS Microbioreactor for Perfused 3D Primary Rat Hepatocyte Cultures , 2004, Biomedical microdevices.

[16]  Wouter Olthuis,et al.  Micro-evaporation electrolyte concentrator , 2003 .

[17]  T. Merkel,et al.  Gas sorption, diffusion, and permeation in poly(dimethylsiloxane) , 2000 .

[18]  M. Lamoree,et al.  Use of microdialysis for the on-line coupling of capillary isoelectric focusing with electrospray mass spectrometry , 1997 .

[19]  Tomoyuki Yasukawa,et al.  Fabrication of miniature Clark oxygen sensor integrated with microstructure , 2005 .

[20]  R. Kostiainen,et al.  Fabrication of porous membrane filter from p‐type silicon , 2005 .

[21]  T Laurell,et al.  Optimal membrane choice for microdialysis sampling of oligosaccharides. , 1998, Journal of chromatography. A.

[22]  John T McDevitt,et al.  Membrane-based on-line optical analysis system for rapid detection of bacteria and spores. , 2005, Biosensors & bioelectronics.

[23]  M. Ulbricht Advanced functional polymer membranes , 2006 .

[24]  Patrick S Doyle,et al.  Permeation-driven flow in poly(dimethylsiloxane) microfluidic devices. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[25]  Mayuresh V. Kothare,et al.  Towards a palladium micro-membrane for the water gas shift reaction: microfabrication approach and hydrogen purification results , 2003 .

[26]  Ralf Lenigk,et al.  DNA amplification and hybridization assays in integrated plastic monolithic devices. , 2002, Analytical chemistry.

[27]  Jonathan V Sweedler,et al.  Design and fabrication of a multilayered polymer microfluidic chip with nanofluidic interconnects via adhesive contact printing. , 2006, Lab on a chip.

[28]  D. DeVoe,et al.  Efficient electrospray ionization from polymer microchannels using integrated hydrophobic membranes. , 2004, Lab on a chip.

[29]  Zhao-Lun Fang,et al.  A microfluidic chip based liquid-liquid extraction system with microporous membrane. , 2006, Analytica chimica acta.

[30]  Wouter Olthuis,et al.  Sampling small volumes of ambient ammonia using a miniaturized gas sampler. , 2004, Lab on a chip.

[31]  Andrew L. Zydney,et al.  Permeability and selectivity analysis for ultrafiltration membranes , 2005 .

[32]  Nicolas Szita,et al.  Membrane‐aerated microbioreactor for high‐throughput bioprocessing , 2004, Biotechnology and bioengineering.

[33]  Jonathan V Sweedler,et al.  Nanocapillary array interconnects for gated analyte injections and electrophoretic separations in multilayer microfluidic architectures. , 2003, Analytical chemistry.

[34]  Ryoji Kurita,et al.  Miniaturized one-chip electrochemical sensing device integrated with a dialysis membrane and double thin-layer flow channels for measuring blood samples. , 2006, Biosensors & bioelectronics.

[35]  Matthias Wessling,et al.  Effect of PDMS cross-linking degree on the permeation performance of PAN/PDMS composite nanofiltration membranes , 2005 .

[36]  Shelley D Minteer,et al.  Microchip-based ethanol/oxygen biofuel cell. , 2005, Lab on a chip.

[37]  L. Locascio,et al.  Integrated microfluidic system enabling protein digestion, peptide separation, and protein identification. , 2001, Analytical chemistry.

[38]  P. Tabeling,et al.  Microevaporators for kinetic exploration of phase diagrams. , 2006, Physical review letters.

[39]  Matthias Wessling,et al.  Phase separation micromolding: a new generic approach for microstructuring various materials. , 2005, Small.

[40]  Cheng S. Lee,et al.  Membrane-based nanoscale proteolytic reactor enabling protein digestion, peptide separation, and protein identification using mass spectrometry. , 2003, Analytical chemistry.

[41]  J. Pawliszyn,et al.  A Capillary Cartridge with an Online Desalting Device That Allows Fast Sampling for Capillary Isoelectric Focusing , 1995 .

[42]  Shu-Ling Lin,et al.  Voltage-controlled separation of proteins by electromobility focusing in a dialysis hollow fiber. , 2003, Journal of chromatography. A.

[43]  Arnaud Bertsch,et al.  Polyimide microfluidic devices with integrated nanoporous filtration areas manufactured by micromachining and ion track technology , 2004 .

[44]  May-Britt Hägg,et al.  Membrane purification of Cl2 gas: I. Permeabilities as a function of temperature for Cl2, O2, N2, H2 in two types of PDMS membranes , 2000 .

[45]  Cheng S. Lee,et al.  High-resolution chiral separation using microfluidics-based membrane chromatography. , 2002, Journal of chromatography. A.

[46]  K. Markides,et al.  A hybrid poly(dimethylsiloxane) microsystem for on-chip whole blood filtration optimized for steroid screening , 2006, Biomedical microdevices.

[47]  Mayuresh V. Kothare,et al.  Microfluidic modeling and simulation of flow in membrane microreactors , 2005 .

[48]  A. Gavriilidis,et al.  Design and fabrication of zeolite-based microreactors and membrane microseparators , 2001 .

[49]  J. Sweedler,et al.  Gateable nanofluidic interconnects for multilayered microfluidic separation systems. , 2003, Analytical chemistry.

[50]  L. Lin,et al.  A water-powered micro drug delivery system , 2004, Journal of Microelectromechanical Systems.

[51]  D. Beebe,et al.  In situ fabricated porous filters for microsystems. , 2003, Lab on a chip.

[52]  Takehiko Kitamori,et al.  Chemicofunctional membrane for integrated chemical processes on a microchip. , 2003, Analytical chemistry.

[53]  King Lun Yeung,et al.  Experiments and modeling of membrane microreactors , 2005 .

[54]  R. Field,et al.  Performance of PDMS and organofunctionalised PDMS membranes for the pervaporative recovery of organics from aqueous streams , 1997 .

[55]  K. Jensen,et al.  Palladium-based micromembranes for hydrogen separation: Device performance and chemical stability , 2004 .

[56]  Asterios Gavriilidis,et al.  Incorporating zeolites in microchemical systems , 2002 .

[57]  C. Rijn Nano and micro engineered membrane technology , 2004 .

[58]  Todd Thorsen,et al.  Development of an integrated microfluidic platform for dynamic oxygen sensing and delivery in a flowing medium. , 2005, Lab on a chip.

[59]  J. M. Henis,et al.  Composite Hollow Fiber Membranes for Gas Separation: The Resistance Model Approach , 1981 .

[60]  D. Erickson,et al.  Integrated microfluidic devices , 2004 .

[61]  Kiichi Sato,et al.  Microbioassay system for antiallergic drug screening using suspension cells retaining in a poly(dimethylsiloxane) microfluidic device. , 2005, Analytical chemistry.

[62]  R. S. Besser,et al.  A PDMS micro proton exchange membrane fuel cell by conventional and non-conventional microfabrication techniques , 2004 .

[63]  C. Ivory,et al.  Protein Focusing in a Conductivity Gradient , 1998, Biotechnology progress.

[64]  G. Whitesides,et al.  Poly(dimethylsiloxane) as a material for fabricating microfluidic devices. , 2002, Accounts of chemical research.

[65]  Simon Song,et al.  Microchip dialysis of proteins using in situ photopatterned nanoporous polymer membranes. , 2004, Analytical chemistry.

[66]  Matthias Wessling,et al.  Phase Separation Micromolding—PSμM , 2003 .

[67]  Lori A. Lepak,et al.  Direct Casting of Polymer Membranes into Microfluidic Devices , 2004 .

[68]  R. Baker Membrane Technology and Applications , 1999 .

[69]  A. van den Berg,et al.  Multi-walled microchannels: free-standing porous silicon membranes for use in /spl mu/TAS , 2000, Journal of Microelectromechanical Systems.

[70]  M. Gijs,et al.  Modular microsystem for epithelial cell culture and electrical characterisation. , 2001, Biosensors & bioelectronics.

[71]  Martin A. M. Gijs,et al.  Biosystem for the culture and characterisation of epithelial cell tissues SAS , 2000 .

[72]  D Matson,et al.  A microfabricated dialysis device for sample cleanup in electrospray ionization mass spectrometry. , 1998, Analytical chemistry.

[73]  G. Whitesides,et al.  Microfluidic devices fabricated in Poly(dimethylsiloxane) for biological studies , 2003, Electrophoresis.

[74]  Ralph G Nuzzo,et al.  An electrochemically driven poly(dimethylsiloxane) microfluidic actuator: oxygen sensing and programmable flows and pH gradients. , 2005, Lab on a chip.

[75]  S. Quake,et al.  Solvent-Resistant Photocurable “Liquid Teflon” for Microfluidic Device Fabrication , 2004 .

[76]  N. Lewis,et al.  Fabrication of Free-Standing Nanoscale Alumina Membranes with Controllable Pore Aspect Ratios , 2004 .

[77]  Lori A. Lepak,et al.  Development and characterization of on-chip biopolymer membranes. , 2006, Journal of chromatography. A.

[78]  D. Peterson,et al.  Solid supports for micro analytical systems. , 2005, Lab on a chip.

[79]  Tianhong Cui,et al.  Fabrication of microreactors for dehydrogenation of cyclohexane to benzene , 2000 .

[80]  G. Whitesides,et al.  Components for integrated poly(dimethylsiloxane) microfluidic systems , 2002, Electrophoresis.

[81]  M Wessling,et al.  New replication technique for the fabrication of thin polymeric microfluidic devices with tunable porosity. , 2005, Lab on a chip.

[82]  Sau Man Lai,et al.  Knoevenagel condensation reaction in zeolite membrane microreactor , 2003 .

[83]  K. Toda,et al.  Hybrid microfabricated device for field measurement of atmospheric sulfur dioxide. , 2002, Analytical chemistry.

[84]  A. Buguin,et al.  Permeation-induced flows: Consequences for silicone-based microfluidics , 2004 .

[85]  S. Goto,et al.  Simulation of membrane microreactor for fuel cell with methane feed , 2003 .

[86]  L E Locascio,et al.  Integrated plastic microfluidic devices with ESI-MS for drug screening and residue analysis. , 2001, Analytical chemistry.

[87]  H. Jörnvall,et al.  A microfluidic electrocapture device in sample preparation for protein analysis by MALDI mass spectrometry. , 2003, Analytical Chemistry.

[88]  Takehiko Kitamori,et al.  Microchip-based chemical and biochemical analysis systems. , 2003, Advanced drug delivery reviews.

[89]  Jan Lichtenberg,et al.  Sample pretreatment on microfabricated devices. , 2002, Talanta.

[90]  Teruo Fujii,et al.  Cell Culture in 3-Dimensional Microfluidic Structure of PDMS (polydimethylsiloxane) , 2003 .

[91]  J. Zahn,et al.  Glucose recovery in a microfluidic microdialysis biochip , 2005 .

[92]  Nam-Trung Nguyen,et al.  Development of a polymeric micro fuel cell containing laser-micromachined flow channels , 2005 .

[93]  K. Bartle,et al.  Towards a miniaturised system for dynamic field gradient focused separation of proteins. , 2004, Journal of chromatography. A.

[94]  K. Toda,et al.  Micro-gas analysis system μGAS comprising a microchannel scrubber and a micro-fluorescence detector for measurement of hydrogen sulfide , 2004 .

[95]  R. Ismagilov,et al.  Screening of protein crystallization conditions on a microfluidic chip using nanoliter-size droplets. , 2003, Journal of the American Chemical Society.

[96]  Teruo Fujii,et al.  Microfluidic PDMS (Polydimethylsiloxane) Bioreactor for Large‐Scale Culture of Hepatocytes , 2004, Biotechnology progress.

[97]  A. van den Berg,et al.  A Miniaturized Carbon Dioxide Gas Sensor Based on Sensing of pH-Sensitive Hydrogel Swelling with a Pressure Sensor , 2005, Biomedical microdevices.

[98]  L. Moskvin,et al.  Membrane Methods of Substance Separation in Analytical Chemistry , 2004 .

[99]  Jan C.T. Eijkel,et al.  Nanotechnology for membranes, filters and sieves , 2006 .

[100]  M. Lamoree,et al.  Application of microdialysis for on‐line coupling of capillary isoelectric focusing with electrospray mass spectrometry on a magnetic sector instrument , 1998 .

[101]  J. G. Wijmans,et al.  The solution-diffusion model: a review , 1995 .

[102]  J. Sweedler,et al.  Profiling pH gradients across nanocapillary array membranes connecting microfluidic channels. , 2005, Journal of the American Chemical Society.

[103]  S. Jacobson,et al.  Microfabricated porous membrane structure for sample concentration and electrophoretic analysis. , 1999, Analytical chemistry.

[104]  D. Matson,et al.  An integrated microfabricated device for dual microdialysis and on-line ESI-ion trap mass spectrometry for analysis of complex biological samples. , 1999, Analytical chemistry.

[105]  Helmut Schift,et al.  High volume fabrication of customised nanopore membrane chips , 2003 .

[106]  G. Whitesides,et al.  Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices. , 2003, Analytical chemistry.

[107]  Jörg P Kutter,et al.  Long-term stable electroosmotic pump with ion exchange membranes. , 2005, Lab on a chip.

[108]  K. Toda,et al.  Micro gas analysis system for measurement of atmospheric hydrogen sulfide and sulfur dioxide. , 2005, Lab on a chip.

[109]  C. A. Smolders,et al.  Vapour sorption and permeation properties of poly(dimethylsiloxane) films , 1991 .

[110]  Chang-Jin Kim,et al.  A degassing plate with hydrophobic bubble capture and distributed venting for microfluidic devices , 2006 .

[111]  G. Whitesides,et al.  Microfluidic arrays of fluid-fluid diffusional contacts as detection elements and combinatorial tools. , 2001, Analytical chemistry.

[112]  Khellil Sefiane,et al.  Modelling a novel miniaturised reactor/separator system , 2003 .

[113]  Simon Song,et al.  Electrophoretic concentration of proteins at laser-patterned nanoporous membranes in microchips. , 2004, Analytical chemistry.

[114]  C. S. Lee,et al.  On-line coupling of micro-enzyme reactor with micro-membrane chromatography for protein digestion, peptide separation, and protein identification using electrospray ionization mass spectrometry. , 2001, Journal of chromatography. A.

[115]  Hywel Morgan,et al.  Rapid fabrication of polymer microfluidic systems for the production of artificial lipid bilayers , 2005 .

[116]  Niels Lion,et al.  On-chip protein sample desalting and preparation for direct coupling with electrospray ionization mass spectrometry. , 2003, Journal of chromatography. A.

[117]  Marcel Mulder,et al.  Basic Principles of Membrane Technology , 1991 .

[118]  Yi Li,et al.  Phase-changing sacrificial materials for interfacing microfluidics with ion-permeable membranes to create on-chip preconcentrators and electric field gradient focusing microchips. , 2006, Analytical chemistry.

[119]  G. Whitesides,et al.  Fabrication of microfluidic systems in poly(dimethylsiloxane) , 2000, Electrophoresis.

[120]  Takehiko Kitamori,et al.  Three-layer flow membrane system on a microchip for investigation of molecular transport. , 2002, Analytical chemistry.