Data Needs for Modeling Low-Temperature Non-Equilibrium Plasmas: The LXCat Project, History, Perspectives and a Tutorial

Technologies based on non-equilibrium, low-temperature plasmas are ubiquitous in today’s society. Plasma modeling plays an essential role in their understanding, development and optimization. An accurate description of electron and ion collisions with neutrals and their transport is required to correctly describe plasma properties as a function of external parameters. LXCat is an open-access, web-based platform for storing, exchanging and manipulating data needed for modeling the electron and ion components of non-equilibrium, low-temperature plasmas. The data types supported by LXCat are electron- and ion-scattering cross-sections with neutrals (total and differential), interaction potentials, oscillator strengths, and electron- and ion-swarm/transport parameters. Online tools allow users to identify and compare the data through plotting routines, and use the data to generate swarm parameters and reaction rates with the integrated electron Boltzmann solver. In this review, the historical evolution of the project and some perspectives on its future are discussed together with a tutorial review for using data from LXCat.

[1]  D. Fursa,et al.  Low-energy electron scattering from molecular hydrogen: Excitation of the X1Σg+ to b3Σu+ transition , 2018, Physical Review A.

[2]  D. Fursa,et al.  Electron impact excitation of molecular hydrogen , 2017 .

[3]  M. Allan,et al.  Near-threshold absolute angle-differential cross sections for electron-impact excitation of argon and xenon , 2006 .

[4]  J. Parker,et al.  RATIO OF THE DIFFUSION COEFFICIENT TO THE MOBILITY COEFFICIENT FOR ELECTRONS IN HE, A, N2, H2, D2, CO, AND CO2 AT LOW TEMPERATURES AND LOW E/P , 1962 .

[5]  Igor Bray,et al.  Electron scattering from the molecular hydrogen ion and its isotopologues , 2014 .

[6]  Yong-ki Kim Scaled Born cross sections for excitations of H2 by electron impact. , 2007, The Journal of chemical physics.

[7]  C. Franck,et al.  Measurement and modeling of electron and anion kinetics in N2O discharges , 2020, Journal of Physics D: Applied Physics.

[8]  Igor Bray,et al.  Complete Solution of Electronic Excitation and Ionization in Electron-Hydrogen Molecule Scattering. , 2016, Physical review letters.

[9]  A. G. Middleton,et al.  Electron collisions with NO: elastic scattering and rovibrational (0 to 1, 2, 3, 4) excitation cross sections , 1995 .

[10]  C. Franck,et al.  Electron transport parameters in CO2: a comparison of two experimental systems and measured data , 2020, Journal of Physics D: Applied Physics.

[11]  D. Fursa,et al.  Low-energy electron-impact dissociative excitation of molecular hydrogen and its isotopologues , 2017 .

[12]  Bray,et al.  Calculation of electron-helium scattering. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[13]  L. Alves,et al.  Electron-neutral scattering cross sections for CO2: a complete and consistent set and an assessment of dissociation , 2016 .

[14]  L. Pitchford GEC Plasma Data Exchange Project , 2013 .

[15]  A. V. Phelps,et al.  Comparisons of sets of electron–neutral scattering cross sections and swarm parameters in noble gases: I. Argon , 2013 .

[16]  A. Fridman,et al.  White paper on the future of plasma science in environment, for gas conversion and agriculture , 2018, Plasma Processes and Polymers.

[17]  A. V. Phelps,et al.  The application of scattering cross sections to ion flux models in discharge sheaths , 1994 .

[18]  C. Franck,et al.  Measurement of the electron attachment properties of SF5CF3 and comparison to SF6 , 2017 .

[19]  C. Franck,et al.  Electron attachment to hexafluoropropylene oxide (HFPO). , 2018, The Journal of chemical physics.

[20]  A. P. Hickman,et al.  Reactive collisions of electrons with H2+, HD+, BeH+, BeD+ and SH+ , 2017 .

[21]  M. Hoshino,et al.  Electron scattering from N2O: absolute elastic scattering and vibrational excitation , 2000 .

[22]  E. A. Mason,et al.  Gaseous ion mobility and diffusion in electric fields of arbitrary strength , 1978 .

[23]  James K. Olthoff,et al.  Electron Interactions With CF3I , 2000 .

[24]  T. Belmonte,et al.  Microwave capillary plasmas in helium at atmospheric pressure , 2014 .

[25]  L. Alves,et al.  Electron impact cross sections for carbon monoxide and their importance in the electron kinetics of CO2–CO mixtures , 2020, Plasma Sources Science and Technology.

[26]  J. Booth,et al.  Kinetics of highly vibrationally excited O2(X) molecules in inductively-coupled oxygen plasmas , 2018 .

[27]  J. Rees Measurements of Townsend's Energy Factor k1 for Electrons in Carbon Dioxide , 1964 .

[28]  Yoshiharu Nakamura,et al.  Electron transport parameters in argon and its momentum transfer cross section , 1988 .

[29]  S. Starikovskaia,et al.  Plasma assisted ignition and combustion , 2006 .

[30]  L. Alves,et al.  Microwave air plasmas in capillaries at low pressure I. Self-consistent modeling , 2016 .

[31]  H. E. H. B. B.Sc. XLV. Genesis of ions by collision and sparking-potentials in carbon dioxide and nitrogen , 1906 .

[32]  Phelps,et al.  Anisotropic scattering of electrons by N2 and its effect on electron transport. , 1985, Physical review. A, General physics.

[33]  H. Tanaka,et al.  Electron scattering from tetrafluoroethylene. , 2004, The Journal of chemical physics.

[35]  C. Franck,et al.  Positive synergy of SF6 and HFO1234ze(E) , 2020, IEEE Transactions on Dielectrics and Electrical Insulation.

[36]  K. Bartschat,et al.  B-spline R-matrix-with-pseudostates calculations for electron-impact excitation and ionization of nitrogen , 2014 .

[37]  J. B. R. B.Sc. CVI. The behaviour of electrons in nitrous oxide , 1932 .

[38]  S. Longo Monte Carlo models of electron and ion transport in non-equilibrium plasmas , 2000 .

[39]  M. Hori,et al.  The 2012 Plasma Roadmap , 2012 .

[40]  L. Viehland,et al.  Relating ion/neutral reaction rate coefficients and cross-sections by accessing a database for ion transport properties , 1995 .

[41]  D. Fursa,et al.  Electron-impact dissociation of molecular hydrogen into neutral fragments , 2018, The European Physical Journal D.

[42]  L. Alves,et al.  The LisbOn KInetics Boltzmann solver , 2019, Plasma Sources Science and Technology.

[43]  M. Brunger,et al.  Low energy electron scattering from CO: absolute cross section measurements and R -matrix calculations , 1996 .

[44]  A. V. Phelps,et al.  Measurement of free-free emission from low-energy-electron collisions with Ar , 1983 .

[45]  Vincent M. Donnelly,et al.  Plasma etching: Yesterday, today, and tomorrow , 2013 .

[46]  Yoshiharu Nakamura DRIFT VELOCITY AND LONGITUDINAL DIFFUSION COEFFICIENT OF ELECTRONS IN CO_2-AR MIXTURES AND ELECTRON COLLISION CROSS SECTIONS FOR CO_2 MOLECULE , 1995 .

[47]  Robert Robson,et al.  Kinetic Theory of Charged Particle Swarms in Neutral Gases , 1980 .

[48]  Klaus Bartschat,et al.  Computational methods for electron–atom collisions in plasma applications , 2013 .

[49]  Hiroshi Tanaka,et al.  Elastic electron scattering from C6H6 and C6F6 , 2001 .

[50]  K. Bartschat,et al.  Electron-impact excitation of argon at intermediate energies , 2014 .

[51]  U. Czarnetzki,et al.  Ignition and afterglow dynamics of a high pressure nanosecond pulsed helium micro-discharge: II. Rydberg molecules kinetics , 2016 .

[52]  R. McEachran,et al.  Low-energy electron scattering from xenon , 1998 .

[53]  J. Tennyson,et al.  Vibrationally resolved NO dissociative excitation cross sections by electron impact , 2020, Plasma Sources Science and Technology.

[54]  Vincent Puech,et al.  Comparisons of sets of electron–neutral scattering cross sections and swarm parameters in noble gases: III. Krypton and xenon , 2013 .

[55]  Eric Robert,et al.  White paper on plasma for medicine and hygiene: Future in plasma health sciences , 2019 .

[56]  V. Vizcaino,et al.  Elastic electron scattering from formic acid (HCOOH): absolute differential cross-sections , 2006 .

[57]  E. A. Mason,et al.  Gaseous lon mobility in electric fields of arbitrary strength , 1975 .

[58]  J. Stephens A multi-term Boltzmann equation benchmark of electron-argon cross-sections for use in low temperature plasma models , 2018 .

[59]  M. Jiménez,et al.  The plasma modelling toolkit Plasimo , 2009 .

[60]  L. Viehland,et al.  Theoretical study of Si+(2PJ)–RG complexes and transport of Si+(2PJ) in RG (RG = He–Ar) , 2017 .

[61]  C. Winstead,et al.  Elastic electron scattering from 3-hydroxytetrahydrofuran: experimental and theoretical studies , 2008 .

[62]  P G C Almeida,et al.  Calculation of ion mobilities by means of the two-temperature displaced-distribution theory , 2002 .

[63]  Daren Yu,et al.  A xenon collisional-radiative model applicable to electric propulsion devices: II. Kinetics of the 6s, 6p, and 5d states of atoms and ions in Hall thrusters , 2019, Plasma Sources Science and Technology.

[64]  J. Boeuf,et al.  Two-dimensional model of a capacitively coupled rf discharge and comparisons with experiments in the Gaseous Electronics Conference reference reactor. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[65]  H. Sawin,et al.  Continuum modeling of argon radio frequency glow discharges , 1987 .

[66]  M. Brunger,et al.  Absolute elastic cross-sections for low-energy electron scattering from tetrahydrofuran , 2007 .

[67]  A. Stauffer,et al.  Viscosity cross sections for the heavy noble gases , 2015 .

[68]  M. Brunger,et al.  Elastic scattering and rovibrational excitation of H2 by low-energy electrons , 1991 .

[69]  Yi-Kang Pu,et al.  Determination of state-to-state electron-impact rate coefficients between Ar excited states: a review of combined diagnostic experiments in afterglow plasmas , 2016 .

[70]  Edmond P. F. Lee,et al.  Spectroscopy of K+ x Rg and transport coefficients of K+ in Rg (Rg=He-Rn). , 2004, The Journal of chemical physics.

[71]  H. Schlumbohm Stoßionisierungskoeffizient α, mittlere Elektronenenergien und die Beweglichkeit von Elektronen in Gasen , 1965 .

[72]  T. G. Wright,et al.  Hybridization and Covalency in the Group 2 and Group 12 Metal Cation/Rare Gas Complexes. , 2018, The journal of physical chemistry. A.

[73]  C. Franck,et al.  Electrical insulation properties of the perfluoronitrile C4F7N , 2018, Journal of Physics D: Applied Physics.

[74]  C. Franck,et al.  Characterization of HFO1234ze mixtures with N2 and CO2 for use as gaseous electrical insulation media , 2017 .

[75]  J. Townsend XXXVIII. The conductivity produced in gases by the aid of ultra-violet light , 1902 .

[76]  Edmond P. F. Lee,et al.  Interaction potentials and spectroscopy of Hg+.Rg and Cd+.Rg and transport coefficients for Hg+ and Cd+ in Rg (Rg=He-Rn). , 2006, The Journal of chemical physics.

[77]  Klaus Bartschat,et al.  B-spline Breit?Pauli R-matrix calculations for electron collisions with argon atoms , 2004 .

[78]  P. Teubner,et al.  Elastic electron scattering from , 1999 .

[79]  L. Viehland,et al.  Interaction potentials, spectroscopy and transport properties of C+(2PJ) and C+(4PJ) with helium , 2015 .

[80]  S. Buckman,et al.  Absolute elastic electron scattering from benzene , 1999 .

[81]  Ute Ebert,et al.  PumpKin: A tool to find principal pathways in plasma chemical models , 2014, Comput. Phys. Commun..

[82]  V. A. Alekseev,et al.  Theoretical profiles of the Mg+ resonance lines perturbed by collisions with He , 2016 .

[83]  C. Franck,et al.  Electrical insulation properties of the perfluoroketone C5F10O , 2018, Journal of Physics D: Applied Physics.

[84]  J. Dutton,et al.  A survey of electron swarm data , 1975 .

[85]  M. Šimek,et al.  Electric field determination in air plasmas from intensity ratio of nitrogen spectral bands: II. Reduction of the uncertainty and state-of-the-art model , 2018, Plasma Sources Science and Technology.

[86]  E. Basurto,et al.  Mobility of CF3+ in CF4, CHF2+ in CHF3, and C+ in Ar , 2001 .

[87]  Adrian M. Gardner,et al.  Theoretical study of M(+)-RG and M(2+)-RG complexes and transport of M(+) through RG (M = Be and Mg, RG = He-Rn). , 2010, The journal of physical chemistry. A.

[88]  L. Frommhold Eine Untersuchung der Elektronenkomponente von Elektronenlawinen im homogenen Feld II , 1960 .

[89]  Hiroshi Tanaka,et al.  Electron collisions with ethylene , 2003 .

[90]  M. Brennan,et al.  Differential and total electron scattering from neon at low incident energies , 1994 .

[91]  M. Rabie,et al.  METHES: A Monte Carlo collision code for the simulation of electron transport in low temperature plasmas , 2016, Comput. Phys. Commun..

[92]  G. Degrez,et al.  Modelling of an RF plasma shower , 2012 .

[93]  M. Elford,et al.  The Drift Velocity of Electrons in Carbon Dioxide at Temperatures between 193 and 573 K , 1980 .

[94]  Andrew Gibson,et al.  Concepts, Capabilities, and Limitations of Global Models: A Review , 2017 .

[95]  James K. Olthoff,et al.  Electron Interactions With SF6 , 2000 .

[96]  S. Buckman,et al.  Measurements of elastic electron scattering by water vapour extended to backward angles , 2004 .

[97]  M. Turner,et al.  Foundations of modelling of nonequilibrium low-temperature plasmas , 2018 .

[98]  J. Sullivan,et al.  Low-energy electron scattering from O2 , 1995 .

[99]  Edward A. Mason,et al.  Transport Properties of Gaseous Ions over a Wide Energy Range , 1976 .

[100]  Ronny Brandenburg,et al.  Foundations of atmospheric pressure non-equilibrium plasmas , 2017 .

[101]  Graves,et al.  Self-consistent model of a direct-current glow discharge: Treatment of fast electrons. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[102]  Y. Itikawa Cross sections for electron collisions with nitric oxide , 2016 .

[103]  M. Brunger,et al.  The scattering of low energy electrons from hydrogen sulphide , 1993 .

[104]  L. Pitchford,et al.  Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models , 2005 .

[105]  S. F. Biagi,et al.  MONTE CARLO SIMULATION OF ELECTRON DRIFT AND DIFFUSION IN COUNTING GASES UNDER THE INFLUENCE OF ELECTRIC AND MAGNETIC FIELDS , 1999 .

[106]  A. V. Phelps,et al.  The LXCat project: Electron scattering cross sections and swarm parameters for low temperature plasma modeling , 2012 .

[107]  Michele Renda,et al.  Betaboltz: A Monte-Carlo simulation tool for gas scattering processes , 2019, Comput. Phys. Commun..

[108]  G. Hagelaar,et al.  Coulomb collisions in the Boltzmann equation for electrons in low-temperature gas discharge plasmas , 2016 .

[109]  M. Benilov,et al.  Modelling interaction of multispecies plasmas with thermionic cathodes , 2005 .

[110]  Maher I. Boulos,et al.  Thermal plasma processing , 1991 .

[111]  L. Viehland,et al.  Interaction potentials, spectroscopy and transport properties of RG+–He (RG=Ar–Rn) , 2009 .

[112]  Morrison,et al.  Detailed theoretical and experimental analysis of low-energy electron-N2 scattering. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[113]  J. Tennyson,et al.  Dissociative recombination of N-2(+) : An ab initio study , 2014 .

[114]  H. Schlumbohm Messung der Driftgeschwindigkeiten von Elektronen und positiven Ionen in Gasen , 1965 .

[115]  M. Brennan,et al.  Elastic electron scattering and rovibrational excitation of N2 at low incident energies , 1992 .

[116]  S. Buckman,et al.  Elastic Electron Scattering from Krypton at Backward Angles , 2003 .

[117]  C. Winstead,et al.  Differential and integral cross sections for elastic electron scattering from CF2 , 2009 .

[118]  K. Ratnavelu,et al.  Elastic electron scattering from helium: absolute experimental cross sections, theory and derived interaction potentials , 1992 .

[119]  A. Kruithof,et al.  Townsend's ionization coefficients for neon, argon, krypton and xenon , 1940 .

[120]  E. Moreau,et al.  The 2017 Plasma Roadmap: Low temperature plasma science and technology , 2017 .

[121]  M. F. Skinker LXXXVIII. The motion of electrons in carbon dioxide , 1922 .

[122]  L. Viehland,et al.  Ab initio study of the mobility of Gd+ ions in He and Ar gases , 2019, International Journal of Mass Spectrometry.

[123]  L. Pitchford,et al.  Evaluation of angular scattering models for electron-neutral collisions in Monte Carlo simulations , 2016 .

[124]  L. Alves,et al.  Electron scattering cross sections for the modelling of oxygen-containing plasmas* , 2016 .

[125]  M. Brunger,et al.  Elastic scattering of low-energy electrons from ammonia , 1992 .

[126]  L. Viehland,et al.  Accurate potential energy curves for HeS- : Spectroscopy and transport coefficients , 2006 .

[127]  C. Franck,et al.  Detailed precision and accuracy analysis of swarm parameters from a pulsed Townsend experiment. , 2018, The Review of scientific instruments.

[128]  M. Brunger,et al.  Resonant excitation of NH3 by low energy electron impact: the nu 1,3 normal vibrational modes , 1992 .

[129]  H. Berriche,et al.  Theoretical Investigation of the Electronic Structure and Spectra of Mg(2+)He and Mg(+)He. , 2016, The journal of physical chemistry. A.

[130]  J. Whitehead,et al.  Plasma–catalysis: the known knowns, the known unknowns and the unknown unknowns , 2016 .

[131]  J. Tennyson,et al.  Dissociative electron attachment and electron-impact resonant dissociation of vibrationally excited O-2 molecules , 2015, 1501.01771.

[132]  R. McEachran,et al.  Momentum transfer cross sections for the heavy noble gases , 2012 .

[133]  H. Schlumbohm Elektronenlawinen in elektronegativen Gasen , 1962 .

[134]  J. Craggs,et al.  Measurement of Ionization and Attachment Coefficients in Carbon Dioxide in Uniform Fields , 1960 .

[135]  V. S. Vorob’ev,et al.  Low-temperature plasmas with nonequilibrium ionization , 1979 .

[136]  M. Hoshino,et al.  Electron scattering from perfluorocyclobutane (c-C4F8). , 2004, The Journal of chemical physics.

[137]  C. Franck,et al.  Comparison of swarm and breakdown data in mixtures of nitrogen, carbon dioxide, argon and oxygen , 2018, Journal of Physics D: Applied Physics.

[138]  Jonathan Tennyson,et al.  LXCat : an open-access, web-based platform for data needed for modeling low temperature plasmas , 2017 .

[139]  C. Franck,et al.  Experimentally derived rate coefficients for electron ionization, attachment and detachment as well as ion conversion in pure O2 and N2–O2 mixtures , 2018, Journal of Physics D: Applied Physics.

[140]  Bray,et al.  Convergent close-coupling calculations of electron-hydrogen scattering. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[141]  S. Buckman,et al.  Elastic scattering of low energy electrons from sulphur dioxide , 1994 .

[142]  G. S. Hurst,et al.  Drift Velocities of Electrons in Some Commonly Used Counting Gases , 1957 .

[143]  M. Benilov,et al.  Field to thermo-field to thermionic electron emission: A practical guide to evaluation and electron emission from arc cathodes , 2013 .

[144]  M. Bowers,et al.  Determination of potential energy curves for ground and metastable excited state transition metal ions interacting with helium and neon using electronic state chromatography , 1992 .

[145]  A. Bogaerts,et al.  A comprehensive chemical model for the splitting of CO2 in non-equilibrium Plasmas , 2017 .

[146]  J. Tennyson,et al.  Low-energy collisions between electrons and BeH+: Cross sections and rate coefficients for all the vibrational states of the ion , 2017, 1701.00228.

[147]  A. Phelps,et al.  DRIFT VELOCITIES OF SLOW ELECTRONS IN KRYPTON XENON, DEUTERIUM, CARBON MONOXIDE, CARBON DIOXIDE, WATER VAPOR, NITROUS OXIDE, AND AMMONIA. Scientific Paper 62-908-113-P4. Technical Report 11 , 1962 .

[148]  Christian M. Franck,et al.  Electron swarm parameters of the hydrofluoroolefine HFO1234ze , 2016 .

[149]  K. Bartschat,et al.  The B-spline R-matrix method for atomic processes: application to atomic structure, electron collisions and photoionization , 2013 .

[150]  P. Segur,et al.  A survey of the numerical methods currently in use to describe the motion of an electron swarm in a weakly ionized gas , 1986 .

[151]  E. Jacquet,et al.  Potential energy curves and spin-orbit coupling of light alkali-heavy rare gas molecules. , 2013, The Journal of chemical physics.

[152]  W. Roznerski,et al.  Electron drift velocity in hydrogen, nitrogen, oxygen, carbon monoxide, carbon dioxide and air at moderate E/N , 1984 .

[153]  Edmond P. F. Lee,et al.  Accurate potential energy curves for HeO-, NeO-, and ArO-: spectroscopy and transport coefficients. , 2005, The Journal of chemical physics.

[154]  J. Jovanovi,et al.  Measurement and interpretation of swarm parameters and their application in plasma modelling , 2009 .

[155]  L. Alves,et al.  The IST-LISBON database on LXCat , 2014 .

[156]  J. Sullivan,et al.  Elastic electron scattering from argon at low incident energies , 1996 .

[157]  L. Viehland,et al.  Interactions of C+(2PJ) with rare gas atoms: incipient chemical interactions, potentials and transport coefficients , 2018, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[158]  G. S. Hurst,et al.  Time‐of‐Flight Investigations of Electron Transport in Some Atomic and Molecular Gases , 1967 .

[159]  Robert J. Hoekstra,et al.  Two‐dimensional modeling of high plasma density inductively coupled sources for materials processing , 1994 .

[160]  C. Franck,et al.  Measurements of the electron swarm parameters of R1225ye(Z) (C3HF5) and its mixtures with N2 and CO2 , 2019 .

[161]  Hiroshi Tanaka,et al.  The role of absorption in intermediate energy elastic electron scattering from krypton , 2004 .

[162]  I. Jõgi,et al.  Effective ionization coefficient of C5 perfluorinated ketone and its mixtures with air , 2018 .

[163]  C. Dedman,et al.  Elastic electron scattering from sulfur hexafluoride , 2000 .