Using extreme value theory to estimate large percentiles
暂无分享,去创建一个
[1] H. A. David,et al. Order Statistics (2nd ed). , 1981 .
[2] Leo Breiman,et al. New Methods for Estimating Tail Probabilities and Extreme Value Disributions. , 1979 .
[3] I. Weissman. Estimation of Parameters and Large Quantiles Based on the k Largest Observations , 1978 .
[4] M. Stephens. Tests of fit for the logistic distribution based on the empirical distribution function , 1979 .
[5] A. Azzalini. A note on the estimation of a distribution function and quantiles by a kernel method , 1981 .
[6] A. M. Gross. A Monte Carlo Swindle for Estimators of Location , 1973 .
[7] Herbert Solomon,et al. Approximations to Density Functions Using Pearson Curves , 1978 .
[8] D. Boos. On Weissman's method of estimating large percentiles , 1981 .
[9] Linus Schrage,et al. A More Portable Fortran Random Number Generator , 1979, TOMS.
[10] D. Dickey. Histograms, Percentiles, and Moments , 1981 .
[11] D. Boos. Minimum anderson-darling estimation , 1982 .
[12] J. D. T. Oliveira,et al. The Asymptotic Theory of Extreme Order Statistics , 1979 .
[13] Further Development of New Methods for Estimating Tail Probabilities and Extreme Value Distributions. , 1981 .
[14] George Marsaglia,et al. Improvements on Fast Methods for Generating Normal Random Variables , 1976, Inf. Process. Lett..
[15] I. Weissman. Estimation of tail parameters under type i censoring , 1980 .