Compositional statistics: An improvement of evolutionary parsimony and its application to deep branches in the tree of life

[1]  G. Pesole,et al.  DNA microenvironments and the molecular clock , 1989, Journal of Molecular Evolution.

[2]  C. Saccone,et al.  The complete nucleotide sequence of theRattus norvegicus mitochondrial genome: Cryptic signals revealed by comparative analysis between vertebrates , 1989, Journal of Molecular Evolution.

[3]  Cecilia Saccone,et al.  Mammalian genes as molecular clocks? , 1985, Journal of Molecular Evolution.

[4]  M. Kimura A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences , 1980, Journal of Molecular Evolution.

[5]  J. Lake Determining evolutionary distances from highly diverged nucleic acid sequences: Operator metrics , 2005, Journal of Molecular Evolution.

[6]  A. Wilson,et al.  Ancient origin of lactalbumin from lysozyme: Analysis of DNA and amino acid sequences , 2005, Journal of Molecular Evolution.

[7]  G. Serio,et al.  A new method for calculating evolutionary substitution rates , 2005, Journal of Molecular Evolution.

[8]  J. Felsenstein Evolutionary trees from DNA sequences: A maximum likelihood approach , 2005, Journal of Molecular Evolution.

[9]  Masasuke Yoshida,et al.  Evolution of the vacuolar H+-ATPase: implications for the origin of eukaryotes. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[10]  N. Saitou,et al.  Relative Efficiencies of the Fitch-Margoliash, Maximum-Parsimony, Maximum-Likelihood, Minimum-Evolution, and Neighbor-joining Methods of Phylogenetic Tree Construction in Obtaining the Correct Tree , 1989 .

[11]  J. Gogarten,et al.  Molecular Evolution of H+-ATPases. I. Methanococcus and Sulfolobus are Monophyletic with Respect to Eukaryotes and Eubacteria , 1989, Zeitschrift fur Naturforschung. C, Journal of biosciences.

[12]  W. Li,et al.  A statistical test of phylogenies estimated from sequence data. , 1989, Molecular biology and evolution.

[13]  W. Zillig,et al.  Organization and nucleotide sequence of the genes encoding the large subunits A, B and C of the DNA-dependent RNA polymerase of the archaebacterium Sulfolobus acidocaldarius. , 1989, Nucleic acids research.

[14]  R A Garrett,et al.  Archaebacterial DNA-dependent RNA polymerases testify to the evolution of the eukaryotic nuclear genome. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[15]  M. Gouy,et al.  Phylogenetic analysis based on rRNA sequences supports the archaebacterial rather than the eocyte tree , 1989, Nature.

[16]  J. A. Cavender,et al.  Mechanized derivation of linear invariants. , 1989, Molecular biology and evolution.

[17]  W. Fitch,et al.  Evidence from nuclear sequences that invariable sites should be considered when sequence divergence is calculated. , 1989, Molecular biology and evolution.

[18]  R. Garrett,et al.  Sequence, organization, transcription and evolution of RNA polymerase subunit genes from the archaebacterial extreme halophiles Halobacterium halobium and Halococcus morrhuae. , 1989, Journal of molecular biology.

[19]  P. Borst,et al.  Trypanosoma brucei contains two RNA polymerase II largest subunit genes with an altered C-terminal domain , 1989, Cell.

[20]  A. Wild,et al.  The Effect of Bialaphos on Ammonium-Assimilation and Photosynthesis I. Effect on the Enzymes of Ammonium-Assimilation , 1989 .

[21]  M. Goodman,et al.  Molecular phylogeny of the family of apes and humans. , 1989, Genome.

[22]  J. Köck,et al.  Structure and sequence of the gene for the largest subunit of trypanosomal RNA polymerase III. , 1988, Nucleic acids research.

[23]  M. Truss,et al.  Reintedness of archaebacterial RNA polymerase core subunits to their eubacterial and eultaryotic equivalents , 1988 .

[24]  G. Hudson,et al.  Spinach chloroplast rpoBC genes encode three subunits of the chloroplast RNA polymerase. , 1988, Journal of molecular biology.

[25]  N. Sueoka Directional mutation pressure and neutral molecular evolution. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[26]  K. Umesono,et al.  Directional mutation pressure and transfer RNA in choice of the third nucleotide of synonymous two-codon sets. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[27]  James A. Lake,et al.  Origin of the eukaryotic nucleus determined by rate-invariant analysis of rRNA sequences , 1988, Nature.

[28]  M. Truss,et al.  Relatedness ofarchaebacterial RNApolymerase coresubunits totheir eubacterial andeukaryotic equivalents , 1988 .

[29]  N. Saitou,et al.  The neighbor-joining method: a new method for reconstructing phylogenetic trees. , 1987, Molecular biology and evolution.

[30]  C. Woese,et al.  Bacterial evolution , 1987, Microbiological reviews.

[31]  W. Whitman,et al.  Methanogens and the diversity of archaebacteria. , 1987, Microbiological reviews.

[32]  J A Lake,et al.  A rate-independent technique for analysis of nucleic acid sequences: evolutionary parsimony. , 1987, Molecular biology and evolution.

[33]  S. Osawa,et al.  The guanine and cytosine content of genomic DNA and bacterial evolution. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[34]  G. Olsen,et al.  Earliest phylogenetic branchings: comparing rRNA-based evolutionary trees inferred with various techniques. , 1987, Cold Spring Harbor symposia on quantitative biology.

[35]  N. Fairweather,et al.  The complete nucleotide sequence of tetanus toxin. , 1986, Nucleic acids research.

[36]  J. Lake In defence of bacterial phylogeny , 1986, Nature.

[37]  W. Fitch The estimate of total nucleotide substitutions from pairwise differences is biased. , 1986, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[38]  M. Stoneking,et al.  Mitochondrial DNA and two perspectives on evolutionary genetics , 1985 .

[39]  Michael Shales,et al.  Extensive homology among the largest subunits of eukaryotic and prokaryotic RNA polymerases , 1985, Cell.

[40]  J. Felsenstein CONFIDENCE LIMITS ON PHYLOGENIES: AN APPROACH USING THE BOOTSTRAP , 1985, Evolution; international journal of organic evolution.

[41]  C R Woese,et al.  The phylogeny of prokaryotes. , 1980, Microbiological sciences.

[42]  M. N. Schnare,et al.  Pronounced structural similarities between the small subunit ribosomal RNA genes of wheat mitochondria and Escherichia coli. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[43]  Yu A. Ovchinnikov,et al.  The primary structure of E. coli RNA polymerase, Nucleotide sequence of the rpoC gene and amino acid sequence of the beta'-subunit , 1982, Nucleic Acids Res..

[44]  F. Sanger,et al.  Complete sequence of bovine mitochondrial DNA. Conserved features of the mammalian mitochondrial genome. , 1982, Journal of molecular biology.

[45]  D. A. Clayton,et al.  Sequence and gene organization of mouse mitochondrial DNA , 1981, Cell.

[46]  F. Sanger,et al.  Sequence and organization of the human mitochondrial genome , 1981, Nature.

[47]  J. Felsenstein Cases in which Parsimony or Compatibility Methods will be Positively Misleading , 1978 .

[48]  P. Raven,et al.  ORIGIN OF EUKARYOTIC CELLS , 1971 .

[49]  T. Jukes CHAPTER 24 – Evolution of Protein Molecules , 1969 .

[50]  A. Sentenac,et al.  RPA 190 , the Gene Coding for the Largest Subunit of Yeast RNA , 2022 .