Optimization of BmimCl pretreatment of sugarcane bagasse through combining multiple responses to increase sugar production. An approach of the kinetic model

[1]  Elba Pinto da Silva Bon,et al.  Modification of microcrystalline cellulose structural properties by ball-milling and ionic liquid treatments and their correlation to enzymatic hydrolysis rate and yield , 2019, Cellulose.

[2]  B. K. Bajaj,et al.  Ultrasound and surfactant assisted ionic liquid pretreatment of sugarcane bagasse for enhancing saccharification using enzymes from an ionic liquid tolerant Aspergillus assiutensis VS34. , 2019, Bioresource technology.

[3]  A. Ingle,et al.  Overcoming challenges in lignocellulosic biomass pretreatment for second-generation (2G) sugar production: emerging role of nano, biotechnological and promising approaches , 2019, 3 Biotech.

[4]  K. Shah,et al.  Progress on the pre-treatment of lignocellulosic biomass employing ionic liquids , 2019, Renewable and Sustainable Energy Reviews.

[5]  L. Barahona-Pérez,et al.  Physical and Chemical Characterization of Agave tequilana Bagasse Pretreated with the Ionic Liquid 1-Ethyl-3-Methylimidazolium Acetate , 2019 .

[6]  H. Bae,et al.  Aqueous acidified ionic liquid pretreatment for bioethanol production and concentration of produced ethanol by pervaporation , 2019, Journal of Industrial and Engineering Chemistry.

[7]  Ashwani Kumar,et al.  Imidazolium Based Ionic Liquids: A Promising Green Solvent for Water Hyacinth Biomass Deconstruction , 2018, Front. Chem..

[8]  B. K. Bajaj,et al.  Application of ionic liquid and alkali pretreatment for enhancing saccharification of sunflower stalk biomass for potential biofuel-ethanol production. , 2018, Bioresource technology.

[9]  Messias Borges Silva,et al.  Estudo comparativo entre métodos de otimização de problemas com múltiplas respostas , 2018, Exacta.

[10]  K. Ninomiya,et al.  Efficient pretreatment of bagasse at high loading in an ionic liquid , 2018, Industrial Crops and Products.

[11]  Koel Saha,et al.  Extraction of lignin, structural characterization and bioconversion of sugarcane bagasse after ionic liquid assisted pretreatment , 2018, 3 Biotech.

[12]  M. Camassola,et al.  Schizosaccharomyces pombe as an Efficient Yeast to Convert Sugarcane Bagasse Pretreated with Ionic Liquids in Ethanol , 2018, Applied Biochemistry and Biotechnology.

[13]  Haile Ma,et al.  Ultrasound-ionic liquid enhanced enzymatic and acid hydrolysis of biomass cellulose. , 2018, Ultrasonics sonochemistry.

[14]  Julie B. Zimmerman,et al.  The Value-Adding Connections Between the Management of Ecoinnovation and the Principles of Green Chemistry and Green Engineering , 2018 .

[15]  Duu-Jong Lee,et al.  Pretreatment of biomass using ionic liquids: Research updates , 2017 .

[16]  L. Mesa,et al.  Desirability function for optimization of Dilute Acid pretreatment of sugarcane straw for ethanol production and preliminary economic analysis based in three fermentation configurations , 2017 .

[17]  A. Matharu,et al.  Monitoring the Crystalline Structure of Sugar Cane Bagasse in Aqueous Ionic Liquids , 2017 .

[18]  A. Ragauskas,et al.  Ionic liquids: Promising green solvents for lignocellulosic biomass utilization , 2017 .

[19]  H. Arafat,et al.  Optimization of lignin recovery from sugarcane bagasse using ionic liquid aided pretreatment , 2017, Cellulose.

[20]  Zhiqiang Pang,et al.  Enhancing cellulose dissolution in ionic liquid by solid acid addition. , 2017, Carbohydrate polymers.

[21]  Krzysztof Kukielka,et al.  The use of ionic liquid pretreatment of rye straw for bioethanol production , 2017 .

[22]  Martha Suzana Rodrigues dos Santos Rocha,et al.  A kinetic model for hydrothermal pretreatment of sugarcane straw. , 2017, Bioresource technology.

[23]  A. Ragauskas,et al.  Comparison of autohydrolysis and ionic liquid 1-butyl-3-methylimidazolium acetate pretreatment to enhance enzymatic hydrolysis of sugarcane bagasse. , 2017, Bioresource technology.

[24]  V. Faraco,et al.  Green methods of lignocellulose pretreatment for biorefinery development , 2016, Applied Microbiology and Biotechnology.

[25]  C. Sasaki,et al.  Cholinium ionic liquid/cosolvent pretreatment for enhancing enzymatic saccharification of sugarcane bagasse , 2016 .

[26]  Zhiqiang Pang,et al.  High selective delignification using oxidative ionic liquid pretreatment at mild conditions for efficient enzymatic hydrolysis of lignocellulose. , 2016, Bioresource technology.

[27]  Karen T. Love,et al.  Structural features affecting the enzymatic digestibility of pine wood pretreated with ionic liquids , 2016, Biotechnology and bioengineering.

[28]  Y. Albernas,et al.  Integration of Organosolv Process for Biomass Pretreatment in a Biorefinery , 2016 .

[29]  M. Xian,et al.  Imidazolium-based ionic liquids for cellulose pretreatment: recent progresses and future perspectives , 2016, Applied Microbiology and Biotechnology.

[30]  M. Jarvis,et al.  Hydrogen-Bonding Network and OH Stretch Vibration of Cellulose: Comparison of Computational Modeling with Polarized IR and SFG Spectra. , 2015, The journal of physical chemistry. B.

[31]  Janez Levec,et al.  Kinetic model of homogeneous lignocellulosic biomass solvolysis in glycerol and imidazolium-based ionic liquids with subsequent heterogeneous hydrodeoxygenation over NiMo/Al2O3 catalyst , 2015 .

[32]  F. Felissia,et al.  Kinetic study of the extraction of hemicellulosic carbohydrates from sugarcane bagasse by hot water treatment. , 2015 .

[33]  J. Görgens,et al.  Relationship between physicochemical properties and enzymatic hydrolysis of sugarcane bagasse varieties for bioethanol production. , 2015, New biotechnology.

[34]  Luiz Pereira Ramos,et al.  Sugarcane biomass for biorefineries: comparative composition of carbohydrate and non-carbohydrate components of bagasse and straw. , 2014, Carbohydrate polymers.

[35]  Maria Isabel Rodrigues,et al.  Experimental Design and Process Optimization , 2014 .

[36]  S. Mussatto,et al.  Restructuring the processes for furfural and xylose production from sugarcane bagasse in a biorefinery concept for ethanol production , 2014 .

[37]  Xinwen Peng,et al.  Impact of regeneration process on the crystalline structure and enzymatic hydrolysis of cellulose obtained from ionic liquid. , 2014, Carbohydrate Polymers.

[38]  M. Cruz-Monteagudo,et al.  Chemoinformatics profiling of ionic liquids--uncovering structure-cytotoxicity relationships with network-like similarity graphs. , 2014, Toxicological sciences : an official journal of the Society of Toxicology.

[39]  Maykel Cruz-Monteagudo,et al.  Chemoinformatics profiling of ionic liquids--automatic and chemically interpretable cytotoxicity profiling, virtual screening, and cytotoxicophore identification. , 2013, Toxicological sciences : an official journal of the Society of Toxicology.

[40]  Bixian Zhang,et al.  Functional ionic liquids for hydrolysis of lignocellulose. , 2013, Carbohydrate polymers.

[41]  J. Hallett,et al.  Deconstruction of lignocellulosic biomass with ionic liquids , 2013 .

[42]  G. Aita,et al.  Effect of ionic liquid pretreatment on the chemical composition, structure and enzymatic hydrolysis of energy cane bagasse. , 2012, Bioresource technology.

[43]  Chen Guo,et al.  Ionic liquids for biofuel production: Opportunities and challenges , 2012 .

[44]  Keat-Teong Lee,et al.  Understanding the impact of ionic liquid pretreatment on biomass and enzymatic hydrolysis , 2012 .

[45]  Suojiang Zhang,et al.  Chlorine-free alternatives to the synthesis of ionic liquids for biomass processing , 2012 .

[46]  J. Fierro,et al.  High glucose yields from the hydrolysis of cellulose dissolved in ionic liquids , 2012 .

[47]  J. Petrich,et al.  Enhanced stability and activity of cellulase in an ionic liquid and the effect of pretreatment on cellulose hydrolysis , 2012, Biotechnology and bioengineering.

[48]  P. Langan,et al.  Ionic-liquid induced changes in cellulose structure associated with enhanced biomass hydrolysis. , 2011, Biomacromolecules.

[49]  J. Prausnitz,et al.  Recovery of glucose from an aqueous ionic liquid by adsorption onto a zeolite-based solid , 2011 .

[50]  Nuno Ricardo Costa,et al.  Desirability function approach: A review and performance evaluation in adverse conditions , 2011 .

[51]  N. Sun,et al.  Rapid dissolution of lignocellulosic biomass in ionic liquids using temperatures above the glass transition of lignin , 2011 .

[52]  F. Kolisis,et al.  Direct enzymatic acylation of cellulose pretreated in BMIMCl ionic liquid. , 2011, Bioresource technology.

[53]  Jyri-Pekka Mikkola,et al.  Dissolution of lignocellulosic materials and its constituents using ionic liquids - a review , 2010 .

[54]  G. Mazza,et al.  Kinetic Modeling of Hemicellulose Hydrolysis from Triticale Straw in a Pressurized Low Polarity Water Flow-Through Reactor , 2010 .

[55]  Liangzhi Li,et al.  Enhancement of enzymatic in situ saccharification of cellulose in aqueous-ionic liquid media by ultrasonic intensification , 2010 .

[56]  Regina Palkovits,et al.  Which controls the depolymerization of cellulose in ionic liquids: the solid acid catalyst or cellulose? , 2010, ChemSusChem.

[57]  Shusheng Pang,et al.  Ionic liquids and their interaction with cellulose. , 2009, Chemical reviews.

[58]  Robin D. Rogers,et al.  Complete dissolution and partial delignification of wood in the ionic liquid 1-ethyl-3-methylimidazolium acetate , 2009 .

[59]  G. Baker,et al.  Regenerating cellulose from ionic liquids for an accelerated enzymatic hydrolysis. , 2009, Journal of biotechnology.

[60]  Regina Palkovits,et al.  Depolymerization of cellulose using solid catalysts in ionic liquids. , 2008, Angewandte Chemie.

[61]  Claus Felby,et al.  Cell-wall structural changes in wheat straw pretreated for bioethanol production , 2008, Biotechnology for biofuels.

[62]  R. Ruiz,et al.  Determination of Sugars, Byproducts, and Degradation Products in Liquid Fraction Process Samples , 2008 .

[63]  Roger A. Sheldon,et al.  Biocatalysis in ionic liquids. , 2002, Chemical reviews.

[64]  A. A. Shatalov,et al.  Kinetics of polysaccharide degradation during ethanol-alkali delignification of giant reed- : Part 2. Minor carbohydrates and uronic acids , 2005 .

[65]  L. Lynd,et al.  Determination of the number-average degree of polymerization of cellodextrins and cellulose with application to enzymatic hydrolysis. , 2005, Biomacromolecules.

[66]  Nhan Nguyen,et al.  “Green engineering: Defining the principles”— resdts from the sandestin conference , 2003 .

[67]  T. K. Ghose Measurement of cellulase activities , 1987 .

[68]  V. Puri Effect of crystallinity and degree of polymerization of cellulose on enzymatic saccharification , 1984, Biotechnology and bioengineering.

[69]  L. Segal',et al.  An Empirical Method for Estimating the Degree of Crystallinity of Native Cellulose Using the X-Ray Diffractometer , 1959 .