Enhancement of Interconnectivity in the Channels of Pentacene Thin‐Film Transistors and Its Effect on Field‐Effect Mobility

With the aim of improving the field-effect mobility of transistors by promoting the interconnectivity of the grains in pentacene thin films, deposition conditions of the pentacene molecules using one-step (total thickness of layer 50 nm: 0.1 A s -1 ) and two-step (first layer 10 nm: 0.1 A s -1 , second layer 40 nm: 4.0 A s -1 ) depositions are controlled. Significantly, it is found that the continuities of the pentacene thin films vary with the deposition conditions of the pentacene molecules. Specifically, a smaller number of voids is observed at the interface for the two-step deposition, which results in field-effect mobilities as high as 1.2 cm 2 V -1 s -1 ; these are higher by more than a factor of two than those of the pentacene films deposited in one step. This remarkable increase in field-effect mobility is due in particular to the interconnectivity of the pentacene grains near the insulator substrate.

[1]  Soeren Steudel,et al.  Influence of the dielectric roughness on the performance of pentacene transistors , 2004 .

[2]  G. Horowitz,et al.  Mobility in Polycrystalline Oligothiophene Field‐Effect Transistors Dependent on Grain Size , 2000 .

[3]  Yeong Don Park,et al.  Influence of the dielectric constant of a polyvinyl phenol insulator on the field-effect mobility of a pentacene-based thin-film transistor , 2005 .

[4]  Effects of polarized organosilane self-assembled monolayers on organic single-crystal field-effect transistors , 2004, cond-mat/0407407.

[5]  Soeren Steudel,et al.  Nucleation of organic semiconductors on inert substrates , 2003 .

[6]  D. Bowler,et al.  Adsorption of pentacene on a silicon surface , 2005 .

[7]  Enge Wang,et al.  Three-dimensional Schwoebel–Ehrlich barrier , 2000 .

[8]  C. C. Mattheus,et al.  Modeling the polymorphism of pentacene. , 2003, Journal of the American Chemical Society.

[9]  Ehrlich-Schwoebel barrier controlled slope selection in epitaxial growth , 1999, cond-mat/9905134.

[10]  L. Torsi,et al.  Organic Transistors: Two-Dimensional Transport and Improved Electrical Characteristics , 1995, Science.

[11]  Vladimir Arkhipov,et al.  Current injection from a metal to a disordered hopping system. I. Monte Carlo simulation , 1999 .

[12]  Auke Meetsma,et al.  Identification of polymorphs of pentacene , 2002 .

[13]  Takeshi Kawai,et al.  Surface Potential Control of an Insulator Layer for the High Performance Organic FET , 2003 .

[14]  Jae-Hoon Park,et al.  Characteristics of pentacene-based thin-film transistors , 2004 .

[15]  C. Dimitrakopoulos,et al.  Organic Thin Film Transistors for Large Area Electronics , 2002 .

[16]  Michele Muccini,et al.  Supramolecular organization in ultra-thin films of α-sexithiophene on silicon dioxide , 2004 .

[17]  S. Im,et al.  Effects of substrate temperature on the device properties of pentacene-based thin film transistors using Al2O3+x gate dielectric , 2004 .

[18]  C. Dimitrakopoulos,et al.  Low-voltage organic transistors on plastic comprising high-dielectric constant gate insulators , 1999, Science.

[19]  G. Malliaras,et al.  Early stages of pentacene film growth on silicon oxide , 2004 .

[20]  S. Iannotta,et al.  Pentacene Thin Film Growth , 2004 .

[21]  Christos D. Dimitrakopoulos,et al.  Molecular beam deposited thin films of pentacene for organic field effect transistor applications , 1996 .

[22]  GROWTH CONDITIONS EFFECTS ON MORPHOLOGY AND TRANSPORT PROPERTIES OF PENTACENE THIN FILMS , 2003 .

[23]  Gilles Horowitz,et al.  Organic Field‐Effect Transistors , 1998 .

[24]  S. Kang,et al.  Influence of postannealing on polycrystalline pentacene thin film transistor , 2004 .

[25]  Jeong In Han,et al.  Enhancement of Field‐Effect Mobility Due to Surface‐Mediated Molecular Ordering in Regioregular Polythiophene Thin Film Transistors , 2005 .

[26]  N. Karl,et al.  Charge carrier transport in organic semiconductors , 2003 .

[27]  G. Scoles,et al.  Pentacene ultrathin film formation on reduced and oxidized Si surfaces , 2003 .

[28]  C. Wöll,et al.  Epitaxial growth of pentacene films on metal surfaces. , 2004, Chemphyschem : a European journal of chemical physics and physical chemistry.

[29]  D. W. Hoffman,et al.  Thin-Film Deposition: Principles and Practice , 1996 .

[30]  R. M. Tromp,et al.  Growth dynamics of pentacene thin films , 2001, Nature.

[31]  Richard L. Schwoebel,et al.  Step Motion on Crystal Surfaces. II , 1966 .

[32]  T. Jackson,et al.  Stacked pentacene layer organic thin-film transistors with improved characteristics , 1997, IEEE Electron Device Letters.

[33]  Gilles Horowitz,et al.  Polymorphism and Charge Transport in Vacuum-Evaporated Sexithiophene Films , 1994 .

[34]  Thomas N. Jackson,et al.  A reduced complexity process for organic thin film transistors , 2000 .

[35]  Dohwan Kim,et al.  Phase state effect on adhesion behavior of self-assembled monolayers. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[36]  C. Frisbie,et al.  Field Effect Conductance Measurements on Thin Crystals of Sexithiophene , 1999 .

[37]  A. Sekiguchi,et al.  Gap-filling property of Cu film by chemical vapor deposition , 1999 .

[38]  Michael A. Haase,et al.  Pentacene-based radio-frequency identification circuitry , 2003 .

[39]  J. Kosterlitz Simple model for anisotropic step growth , 1998, cond-mat/9805150.

[40]  Stephen R. Forrest,et al.  Ultrathin Organic Films Grown by Organic Molecular Beam Deposition and Related Techniques. , 1997, Chemical reviews.

[41]  A. Toriumi,et al.  Study on the growth mechanism of pentacene thin films by the analysis of island density and island size distribution , 2004 .