An iterated uniform finite-state transducer (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsc {iufst}$$\end{document}) operates the same length-preserving transduction, starting with a sweep on the input string and then iteratively sweeping on the output of the previous sweep. The \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsc {iufst}$$\end{document} accepts or rejects the input string by halting in an accepting or rejecting state along its sweeps. We consider both the deterministic (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsc {iufst}$$\end{document}) and nondeterministic (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsc {niufst}$$\end{document}) version of this device. We show that constant sweep bounded \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsc {iufst}$$\end{document}s and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsc {niufst}$$\end{document}s accept all and only regular languages. We study the size cost of removing nondeterminism as well as sweeps on constant sweep bounded \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsc {niufst}$$\end{document}s, and the descriptional power of constant sweep bounded \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsc {iufst}$$\end{document}s and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsc {niufst}$$\end{document}s with respect to classical models of finite-state automata. Finally, we focus on non-constant sweep bounded devices, proving the existence of a proper infinite nonregular language hierarchy depending on the sweep complexity both in the deterministic and nondeterministic case. Also, we show that the nondeterministic devices are always more powerful than their deterministic variant if at least a logarithmic number of sweeps is given.
[1]
Carlo Mereghetti,et al.
Boolean language operations on nondeterministic automata with a pushdown of constant height
,
2013,
J. Comput. Syst. Sci..
[2]
Abraham Ginzburg,et al.
Chapter 5 – Coverings of Automata
,
1968
.
[3]
Martin Kutrib,et al.
Descriptional Complexity - An Introductory Survey
,
2010,
Scientific Applications of Language Methods.
[4]
Paul M. B. Vitányi,et al.
An Introduction to Kolmogorov Complexity and Its Applications
,
1993,
Graduate Texts in Computer Science.
[5]
George H. Mealy,et al.
A method for synthesizing sequential circuits
,
1955
.
[6]
Denis Maurel,et al.
Finite-state transducer cascades to extract named entities in texts
,
2004,
Theor. Comput. Sci..
[7]
Vincenzo Manca,et al.
On the Generative Power of Iterated Transductions
,
2001,
Words, Semigroups, and Transductions.
[8]
Carlo Mereghetti,et al.
The size-cost of Boolean operations on constant height deterministic pushdown automata
,
2012,
Theor. Comput. Sci..
[9]
Juris Hartmanis,et al.
Computational Complexity of One-Tape Turing Machine Computations
,
1968,
JACM.
[10]
Jeffrey D. Ullman,et al.
Introduction to Automata Theory, Languages and Computation
,
1979
.
[11]
守屋 悦朗,et al.
J.E.Hopcroft, J.D. Ullman 著, "Introduction to Automata Theory, Languages, and Computation", Addison-Wesley, A5変形版, X+418, \6,670, 1979
,
1980
.
[12]
J. Hartmanis,et al.
Algebraic Structure Theory Of Sequential Machines
,
1966
.
[13]
M. Dal Cin,et al.
The Algebraic Theory of Automata
,
1980
.
[14]
Claudio Citrini,et al.
On Deterministic Multi-Pass Analysis
,
1986,
SIAM J. Comput..
[15]
Henning Fernau,et al.
Iterated sequential transducers as language generating devices
,
2006,
Theor. Comput. Sci..
[16]
Alberto Bertoni,et al.
Trace monoids with idempotent generators and measure-only quantum automata
,
2010,
Natural Computing.
[17]
Martin Kutrib,et al.
Descriptional Complexity of Iterated Uniform Finite-State Transducers
,
2019,
DCFS.
[18]
Ming Li,et al.
An Introduction to Kolmogorov Complexity and Its Applications
,
2019,
Texts in Computer Science.
[19]
Carlo Mereghetti,et al.
Complexity of Promise Problems on Classical and Quantum Automata
,
2014,
Computing with New Resources.
[20]
Klaus Sutner,et al.
Decision Problems on Iterated Length-Preserving Transducers
,
2011
.
[21]
Andreas Malcher,et al.
Descriptional complexity of two-way pushdown automata with restricted head reversals
,
2011,
Theor. Comput. Sci..