Prediction and characterization of noncoding RNAs in C. elegans by integrating conservation, secondary structure, and high-throughput sequencing and array data.
暂无分享,去创建一个
Raymond K. Auerbach | Kevin Y Yip | Zhi John Lu | Kevin Y. Yip | Chong Shou | Mark B Gerstein | Joel Rozowsky | Valerie Reinke | Ekta Khurana | Michael Snyder | Chao Cheng | Masaomi Kato | M. Gerstein | F. Slack | L. Hillier | R. Waterston | V. Reinke | Z. Lu | M. Snyder | Ekta Khurana | J. Rozowsky | C. Shou | Chao Cheng | A. Agarwal | Masaomi Kato | David M. Miller | Guilin Wang | Ashish Agarwal | Guilin Wang | Ladeana W Hillier | Raymond Auerbach | David M Miller | Frank Slack | Robert H Waterston | Kevin Y. Yip
[1] Raymond K. Auerbach,et al. Integrative Analysis of the Caenorhabditis elegans Genome by the modENCODE Project , 2010, Science.
[2] M. Gerstein,et al. Comparison and calibration of transcriptome data from RNA-Seq and tiling arrays , 2010, BMC Genomics.
[3] Raymond K. Auerbach,et al. Genome-Wide Identification of Binding Sites Defines Distinct Functions for Caenorhabditis elegans PHA-4/FOXA in Development and Environmental Response , 2010, PLoS genetics.
[4] John S Mattick,et al. Identification of novel non-coding RNAs using profiles of short sequence reads from next generation sequencing data , 2010, BMC Genomics.
[5] Brian Luke,et al. TERRA: telomeric repeat-containing RNA , 2009, The EMBO journal.
[6] M. Gerstein,et al. Unlocking the secrets of the genome , 2009, Nature.
[7] Zachary Pincus,et al. Dynamic expression of small non-coding RNAs, including novel microRNAs and piRNAs/21U-RNAs, during Caenorhabditis elegans development , 2009, Genome Biology.
[8] Sean R. Eddy,et al. Infernal 1.0: inference of RNA alignments , 2009, Bioinform..
[9] R. Sachidanandam,et al. Post-transcriptional processing generates a diversity of 5′-modified long and short RNAs , 2009, Nature.
[10] Michael F. Lin,et al. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals , 2009, Nature.
[11] Patricia P. Chan,et al. GtRNAdb: a database of transfer RNA genes detected in genomic sequence , 2008, Nucleic Acids Res..
[12] Robert D. Finn,et al. Rfam: updates to the RNA families database , 2008, Nucleic Acids Res..
[13] W. L. Ruzzo,et al. Comparative genomics beyond sequence-based alignments: RNA structures in the ENCODE regions. , 2008, Genome research.
[14] S. Sunkin,et al. Specific expression of long noncoding RNAs in the mouse brain , 2008, Proceedings of the National Academy of Sciences.
[15] W. Theurkauf,et al. Biogenesis and germline functions of piRNAs , 2007, Development.
[16] Stijn van Dongen,et al. miRBase: tools for microRNA genomics , 2007, Nucleic Acids Res..
[17] Wei Zhou,et al. Mapping the C. elegans noncoding transcriptome with a whole-genome tiling microarray. , 2007, Genome research.
[18] Jan Gorodkin,et al. Fast Pairwise Structural RNA Alignments by Pruning of the Dynamical Programming Matrix , 2007, PLoS Comput. Biol..
[19] M. Gerstein,et al. Structured Rnas in the Encode Selected Regions of the Human Genome , 2022 .
[20] Petrus Tang,et al. Intronic microRNA: discovery and biological implications. , 2007, DNA and cell biology.
[21] Gaurav Sharma,et al. Efficient pairwise RNA structure prediction using probabilistic alignment constraints in Dynalign , 2007, BMC Bioinformatics.
[22] P. Stadler,et al. Prediction of structured non-coding RNAs in the genomes of the nematodes Caenorhabditis elegans and Caenorhabditis briggsae. , 2006, Journal of experimental zoology. Part B, Molecular and developmental evolution.
[23] J. Gorodkin,et al. Thousands of corresponding human and mouse genomic regions unalignable in primary sequence contain common RNA structure. , 2006, Genome research.
[24] David H. Mathews,et al. Detection of non-coding RNAs on the basis of predicted secondary structure formation free energy change , 2006, BMC Bioinformatics.
[25] Laurent Lestrade,et al. snoRNA-LBME-db, a comprehensive database of human H/ACA and C/D box snoRNAs , 2005, Nucleic Acids Res..
[26] James R. Knight,et al. Genome sequencing in microfabricated high-density picolitre reactors , 2005, Nature.
[27] J. Shendure,et al. Materials and Methods Som Text Figs. S1 and S2 Tables S1 to S4 References Accurate Multiplex Polony Sequencing of an Evolved Bacterial Genome , 2022 .
[28] Karin Kiontke,et al. The phylogenetic relationships of Caenorhabditis and other rhabditids. , 2005, WormBook : the online review of C. elegans biology.
[29] Peter Schattner,et al. The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs , 2005, Nucleic Acids Res..
[30] Peter F Stadler,et al. Fast and reliable prediction of noncoding RNAs , 2005, Proc. Natl. Acad. Sci. USA.
[31] B. Berger,et al. MSARI: multiple sequence alignments for statistical detection of RNA secondary structure. , 2004, Proceedings of the National Academy of Sciences of the United States of America.
[32] D. Bartel. MicroRNAs Genomics, Biogenesis, Mechanism, and Function , 2004, Cell.
[33] Diego di Bernardo,et al. ddbRNA: detection of conserved secondary structures in multiple alignments , 2003, Bioinform..
[34] C. Burge,et al. Widespread selection for local RNA secondary structure in coding regions of bacterial genes. , 2003, Genome research.
[35] Elena Rivas,et al. Noncoding RNA gene detection using comparative sequence analysis , 2001, BMC Bioinformatics.
[36] S. Eddy,et al. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. , 1997, Nucleic acids research.
[37] W. L. Ruzzo,et al. De novo prediction of structured RNAs from genomic sequences. , 2010, Trends in biotechnology.
[38] Raymond K. Auerbach,et al. PeakSeq enables systematic scoring of ChIP-seq experiments relative to controls , 2009, Nature Biotechnology.
[39] David Haussler,et al. Identification and Classification of Conserved RNA Secondary Structures in the Human Genome , 2006, PLoS Comput. Biol..