THE BIERMANN CATASTROPHE IN NUMERICAL MAGNETOHYDRODYNAMICS

The Biermann battery effect is frequently invoked in cosmic magnetogenesis and studied in high-energy density laboratory physics experiments. Generation of magnetic fields by the Biermann effect due to misaligned density and temperature gradients in smooth flow behind shocks is well known. We show that a Biermann-effect magnetic field is also generated within shocks. Direct implementation of the Biermann effect in MHD codes does not capture this physical process, and worse, it produces unphysical magnetic fields at shocks whose value does not converge with resolution. We show that this convergence breakdown is due to naive discretization, which fails to account for the fact that discretized irrotational vector fields have spurious solenoidal components that grow without bound near a discontinuity. We show that careful consideration of the kinetics of ion viscous shocks leads to a formulation of the Biermann effect that gives rise to a convergent algorithm. We note two novel physical effects: a resistive magnetic precursor, in which a Biermann-generated field in the shock "leaks" resistively upstream, and a thermal magnetic precursor, in which a field is generated by the Biermann effect ahead of the shock front owing to gradients created by the shock's electron thermal conduction precursor. Both effects appear to be potentially observable in experiments at laser facilities. We reexamine published studies of magnetogenesis in galaxy cluster formation and conclude that the simulations in question had inadequate resolution to reliably estimate the field generation rate. Corrected estimates suggest primordial field values in the range –10−19 G by z = 3.

[1]  R. LeVeque Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .

[2]  D. E. Kerr Physics of Fully Ionized Gases. , 1956 .

[3]  K. Subramanian,et al.  Thermal generation of cosmological seed magnetic fields in ionization fronts , 1994 .

[4]  M. Norman,et al.  EVOLUTION AND DISTRIBUTION OF MAGNETIC FIELDS FROM ACTIVE GALACTIC NUCLEI IN GALAXY CLUSTERS. II. THE EFFECTS OF CLUSTER SIZE AND DYNAMICAL STATE , 2011, 1107.2599.

[5]  Moustafa T. Chahine,et al.  Foundations of Radiation Hydrodynamics (Dimitri Mihalas and Barbara Weibel Mihalas) , 1987 .

[6]  R. P. Drake,et al.  The possible effects of magnetic fields on laser experiments of Rayleigh-Taylor instabilities , 2010 .

[7]  Klaus Weide,et al.  FLASH magnetohydrodynamic simulations of shock-generated magnetic field experiments , 2012 .

[8]  S. Wilks,et al.  Electric field and ionization-gradient effects on inertial-confinement-fusion implosions , 2009 .

[9]  M. Markevitch,et al.  COLD FRONTS AND GAS SLOSHING IN GALAXY CLUSTERS WITH ANISOTROPIC THERMAL CONDUCTION , 2012, 1204.6005.

[10]  L. Biermann Über den Ursprung der Magnetfelder auf Sternen und im interstellaren Raum (miteinem Anhang von A. Schlüter) , 1950 .

[11]  Generation of the Primordial Magnetic Fields during Cosmological Reionization , 2000, astro-ph/0001066.

[12]  Xianzhu Tang,et al.  The mitigating effect of magnetic fields on Rayleigh-Taylor unstable inertial confinement fusion plasmasa) , 2013 .

[13]  M. Lighthill Supersonic Flow and Shock Waves , 1949, Nature.

[14]  R. P. Drake,et al.  Generation of scaled protogalactic seed magnetic fields in laser-produced shock waves , 2012, Nature.

[15]  Nicholas K.-R. Kevlahan,et al.  The vorticity jump across a shock in a non-uniform flow , 1997, Journal of Fluid Mechanics.

[16]  Extragalactic magnetic fields , 1994 .

[17]  R. P. Drake,et al.  High-Energy-Density Physics: Fundamentals, Inertial Fusion, and Experimental Astrophysics , 2006 .

[18]  R. Cen,et al.  Properties of Cosmic Shock Waves in Large-Scale Structure Formation , 2000, astro-ph/0005444.

[19]  A. Fabian,et al.  Linear Structures in the Core of the Coma Cluster of Galaxies , 2013, Science.

[20]  S. Penner Physics of shock waves and high-temperature hydrodynamic phenomena - Ya.B. Zeldovich and Yu.P. Raizer (translated from the Russian and then edited by Wallace D. Hayes and Ronald F. Probstein); Dover Publications, New York, 2002, 944 pp., $34. , 2003 .

[21]  Andrew Siegel,et al.  Extensible component-based architecture for FLASH, a massively parallel, multiphysics simulation code , 2009, Parallel Comput..

[22]  L. Spitzer Physics of fully ionized gases , 1956 .

[23]  L. Widrow,et al.  Origin of galactic and extragalactic magnetic fields , 2002, astro-ph/0207240.

[24]  B. Fryxell,et al.  FLASH: An Adaptive Mesh Hydrodynamics Code for Modeling Astrophysical Thermonuclear Flashes , 2000 .

[25]  Klaus Weide,et al.  Modeling HEDLA magnetic field generation experiments on laser facilities , 2013 .

[26]  Dongwook Lee,et al.  A solution accurate, efficient and stable unsplit staggered mesh scheme for three dimensional magnetohydrodynamics , 2013, J. Comput. Phys..

[27]  Anthony Scopatz,et al.  Turbulent amplification of magnetic fields in laboratory laser-produced shock waves , 2014, Nature Physics.

[28]  D. Balsara,et al.  A Staggered Mesh Algorithm Using High Order Godunov Fluxes to Ensure Solenoidal Magnetic Fields in Magnetohydrodynamic Simulations , 1999 .

[29]  R. Cen,et al.  The Protogalactic Origin for Cosmic Magnetic Fields , 1996, astro-ph/9607141.

[30]  L. Widrow,et al.  A Possible Mechanism for Generating Galactic Magnetic Fields , 2000 .

[31]  E. Toro Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .

[32]  B. O’Shea,et al.  The Biermann Battery in Cosmological MHD Simulations of Population III Star Formation , 2008, 0807.2647.

[33]  X-ray clusters in a cold dark matter + lambda universe: A direct, large-scale, high-resolution, hydrodynamic simulation , 1994, astro-ph/9404012.

[34]  R. Kulsrud,et al.  the Origin of Cosmic Magnetic Fields , 1996 .

[35]  Devin W. Silvia,et al.  ENZO: AN ADAPTIVE MESH REFINEMENT CODE FOR ASTROPHYSICS , 2013, J. Open Source Softw..

[36]  B. O’Shea,et al.  COSMOLOGICAL SIMULATIONS OF ISOTROPIC CONDUCTION IN GALAXY CLUSTERS , 2013, 1306.5748.

[37]  J Korea,et al.  Cosmological Shock Waves and Their Role in the Large-Scale Structure of the Universe , 2003, astro-ph/0305164.

[38]  R. Probstein,et al.  Structure of a Plasma Shock Wave , 1964 .

[39]  M. Norman,et al.  EVOLUTION AND DISTRIBUTION OF MAGNETIC FIELDS FROM ACTIVE GALACTIC NUCLEI IN GALAXY CLUSTERS. I. THE EFFECT OF INJECTION ENERGY AND REDSHIFT , 2010, 1011.0030.

[40]  Dongsu Ryu,et al.  The First Magnetic Fields , 1999, astro-ph/9912260.

[41]  P. Browning Introduction to Plasma Physics: With Space and Laboratory Applications , 2005 .