Quantitative Trait Loci on Chromosomes 2p, 4p, and 13q Influence Bone Mineral Density of the Forearm and Hip in Mexican Americans

We performed a genome scan using BMD data of the forearm and hip on 664 individuals in 29 Mexican‐American families. We obtained evidence for QTL on chromosome 4p, affecting forearm BMD overall, and on chromosomes 2p and 13q, affecting hip BMD in men.

[1]  L. Almasy,et al.  Multipoint quantitative-trait linkage analysis in general pedigrees. , 1998, American journal of human genetics.

[2]  E. Graves National hospital discharge survey: annual summary, 1991. , 1993, Vital and health statistics. Series 13, Data from the National Health Survey.

[3]  D. Kiel,et al.  Genome Screen for Quantitative Trait Loci Contributing to Normal Variation in Bone Mineral Density: The Framingham Study , 2002, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[4]  G A Churchill,et al.  Quantitative Trait Loci for Femoral and Lumbar Vertebral Bone Mineral Density in C57BL/6J and C3H/HeJ Inbred Strains of Mice , 2001, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[5]  M. Devoto,et al.  Variance component linkage analysis indicates a QTL for femoral neck bone mineral density on chromosome 1p36. , 2001, Human molecular genetics.

[6]  E. Graves National Hospital Discharge Survey: annual summary, 1993. , 1995, Vital and health statistics. Series 13, Data from the National Health Survey.

[7]  Mark L. Johnson,et al.  Linkage of a gene causing high bone mass to human chromosome 11 (11q12-13) , 1997, American journal of human genetics.

[8]  J. Blangero,et al.  Genetic and environmental contributions to cardiovascular risk factors in Mexican Americans. The San Antonio Family Heart Study. , 1996, Circulation.

[9]  S. Ortolani,et al.  Genetics of osteoporosis , 1994, Calcified Tissue International.

[10]  L. Almasy,et al.  Multipoint oligogenic linkage analysis of quantitative traits , 1997, Genetic epidemiology.

[11]  Hui Shen,et al.  A whole-genome linkage scan suggests several genomic regions potentially containing quantitative trait Loci for osteoporosis. , 2002, The Journal of clinical endocrinology and metabolism.

[12]  T. Spector,et al.  Comparison of genome screens for two independent cohorts provides replication of suggestive linkage of bone mineral density to 3p21 and 1p36. , 2003, American journal of human genetics.

[13]  J. Cauley,et al.  Molecular epidemiology of vitamin D receptor gene variants. , 2000, Epidemiologic reviews.

[14]  L. Melton,et al.  The worldwide problem of osteoporosis: insights afforded by epidemiology. , 1995, Bone.

[15]  T. Foroud,et al.  Linkage of Structure at the Proximal Femur to Chromosomes 3, 7, 8, and 19 , 2003, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[16]  S. Cummings Are patients with hip fractures more osteoporotic? Review of the evidence. , 1985, The American journal of medicine.

[17]  J. Ott,et al.  First-stage autosomal genome screen in extended pedigrees suggests genes predisposing to low bone mineral density on chromosomes 1p, 2p and 4q , 1998, European Journal of Human Genetics.

[18]  Daniel L. Koller,et al.  Linkage of a QTL Contributing to Normal Variation in Bone Mineral Density to Chromosome 11q12–13 , 1998, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[19]  T. Niu,et al.  A genome-wide scan for loci linked to forearm bone mineral density , 1999, Human Genetics.

[20]  S. Heath Markov chain Monte Carlo segregation and linkage analysis for oligogenic models. , 1997, American journal of human genetics.

[21]  C. Rosen IGF-I and osteoporosis. , 2000, Clinics in laboratory medicine.

[22]  M. Nuttall,et al.  Human Trabecular Bone Cells Are Able to Express Both Osteoblastic and Adipocytic Phenotype: Implications for Osteopenic Disorders , 1998, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[23]  Debono Ef OUTPATIENT WAITING TIME. , 1963 .

[24]  B. Mitchell,et al.  Genetic and environmental determinants of bone mineral density in Mexican Americans: results from the San Antonio Family Osteoporosis Study. , 2003, Bone.

[25]  M. Jensen,et al.  Leptin acts on human marrow stromal cells to enhance differentiation to osteoblasts and to inhibit differentiation to adipocytes. , 1999, Endocrinology.

[26]  E. Lander,et al.  Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results , 1995, Nature Genetics.

[27]  Y. Ouchi,et al.  Association of Bone Mineral Density with a Polymorphism of the Peroxisome Proliferator-Activated Receptor γ Gene: PPARγ Expression in Osteoblasts , 1999 .

[28]  S. Cummings,et al.  Bone density at various sites for prediction of hip fractures , 1993, The Lancet.

[29]  Mark L. Johnson,et al.  A mutation in the LDL receptor-related protein 5 gene results in the autosomal dominant high-bone-mass trait. , 2002, American journal of human genetics.

[30]  R. Lindsay,et al.  PREVENTION OF SPINAL OSTEOPOROSIS IN OOPHORECTOMISED WOMEN , 1980, The Lancet.

[31]  D. Leroith,et al.  Circulating levels of IGF-1 directly regulate bone growth and density. , 2002, The Journal of clinical investigation.

[32]  Y. Ouchi,et al.  Association of bone mineral density with a polymorphism of the peroxisome proliferator-activated receptor gamma gene: PPARgamma expression in osteoblasts. , 1999, Biochemical and biophysical research communications.

[33]  Daniel L. Koller,et al.  Genome screen for QTLs contributing to normal variation in bone mineral density and osteoporosis. , 2000, The Journal of clinical endocrinology and metabolism.

[34]  Daniel L. Koller,et al.  Genome Screen for Quantitative Trait Loci Underlying Normal Variation in Femoral Structure , 2001, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.