Decay of Entropy Solutions of Nonlinear Conservation Laws

Abstract.

[1]  Gui-Qiang G. Chen,et al.  Zero relaxation and dissipation limits for hyperbolic conservation laws , 1993 .

[2]  F. Murat,et al.  Compacité par compensation , 1978 .

[3]  R. J. Diperna,et al.  Convergence of the viscosity method for isentropic gas dynamics , 1983 .

[4]  D. Serre Richness and the Classification of Quasilinear Hyperbolic Systems , 1991 .

[5]  A. I. Vol'pert THE SPACES BV AND QUASILINEAR EQUATIONS , 1967 .

[6]  H. Frid,et al.  Nonstrictly hyperbolic systems of conservation laws of the conjugate type , 1994 .

[7]  Gui-Qiang G. Chen,et al.  Large-Time Behavior of Entropy Solutions of Conservation Laws☆ , 1999 .

[8]  J. Glimm Solutions in the large for nonlinear hyperbolic systems of equations , 1965 .

[9]  Gui-Qiang G. Chen The method of quasidecoupling for discontinuous solutions to conservation laws , 1992 .

[10]  B. Perthame,et al.  Kinetic formulation for chromatography and some other hyperbolic systems , 1995 .

[11]  P. Lax,et al.  Decay of solutions of systems of nonlinear hyperbolic conservation laws , 1970 .

[12]  A. Bressan Hyperbolic Systems of Conservation Laws , 1999 .

[13]  S. Zienau Quantum Physics , 1969, Nature.

[14]  P. Souganidis,et al.  Existence and stability of entropy solutions for the hyperbolic systems of isentropic gas dynamics in Eulerian and Lagrangian coordinates , 1998 .

[15]  P. Lax Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves , 1987 .

[16]  Constantine M. Dafermos,et al.  Applications of the invariance principle for compact processes II. Asymptotic behavior of solutions of a hyperbolic conservation law , 1972 .

[17]  B. Rubino On the vanishing viscosity approximation to the Cauchy problem for a 2×2 system of conservation laws , 1993 .

[18]  Entropies and weak solutions of the compressible isentropic Euler equations , 1997 .

[19]  R. J. DiPerna Convergence of approximate solutions to conservation laws , 1983 .

[20]  Gui-Qiang G. Chen Hyperbolic systems of conservation laws with a symmetry , 1991 .

[21]  W. PEDDIE,et al.  The Scientific Papers of James Clerk Maxwell , 1927, Nature.

[22]  C. Dafermos Generalized characteristics in hyperbolic systems of conservation laws , 1989 .

[23]  Gui-Qiang G. Chen,et al.  The vanishing viscosity method in one-dimensional thermoelasticity , 1995 .

[24]  B. Perthame,et al.  Kinetic formulation of the isentropic gas dynamics andp-systems , 1994 .

[25]  S. Kružkov FIRST ORDER QUASILINEAR EQUATIONS IN SEVERAL INDEPENDENT VARIABLES , 1970 .

[26]  Hermano Frid,et al.  Divergence‐Measure Fields and Hyperbolic Conservation Laws , 1999 .

[27]  Gui-Qiang G. Chen,et al.  Hyperbolic conservation laws with umbilic degeneracy, I , 1995 .

[28]  David G. Schaeffer,et al.  The classification of 2 × 2 systems of non‐strictly hyperbolic conservation laws, with application to oil recovery , 1987 .

[29]  L. Evans Measure theory and fine properties of functions , 1992 .

[30]  Gui-Qiang G. Chen,et al.  Hyperbolic Conservation Laws with Umbilic Degeneracy II , 2022 .

[31]  R. J. Diperna,et al.  Decay of solutions of hyperbolic systems of conservation laws with a convex extension , 1977 .

[32]  B. Engquist,et al.  Large time behavior and homogenization of solutions of two-dimensional conservation laws , 1993 .

[33]  J. Smoller Shock Waves and Reaction-Diffusion Equations , 1983 .

[34]  P. Lax Shock Waves and Entropy , 1971 .

[35]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[36]  J. Ball Convexity conditions and existence theorems in nonlinear elasticity , 1976 .

[37]  J. Greenberg,et al.  Time-periodic solutions to systems of conservation laws , 1991 .

[38]  Luc Tartar,et al.  Compensated compactness and applications to partial differential equations , 1979 .

[39]  Peizhu Luo,et al.  CONVERGENCE OF THE LAX–FRIEDRICHS SCHEME FOR ISENTROPIC GAS DYNAMICS (III) , 1985 .

[40]  B. Perthame,et al.  A kinetic formulation of multidimensional scalar conservation laws and related equations , 1994 .