Notes on Majority Boolean Algebra

A Majority-Inverter Graph (MIG) is a homogeneous logic network, where each node represents the majority function. Recently, a logic optimization package based on the MIG data structure, with 3-input majority node (M3) has been proposed [2],[30]. It is demonstrated to have efficient area-delay-power results compared to state-of-the-art logic optimization packages. In this paper, the Boolean algebraic transformations based on majority logic, i.e., majority Boolean algebra is studied. In the first part of this paper, we summarize a range of identities for majority Boolean algebra with their corresponding proofs. In the second part, we venture towards heterogeneous logic network and provide reversible logic mapping of majority nodes.

[1]  Claude E. Shannon,et al.  The synthesis of two-terminal switching circuits , 1949, Bell Syst. Tech. J..

[2]  Eiiti Wada,et al.  Esaki Diode High-Speed Logical Circuits , 1960, IRE Trans. Electron. Comput..

[3]  Richard Lindaman,et al.  A Theorem for Deriving Majority-Logic Networks Within an Augmented Boolean Algebra , 1960, IRE Trans. Electron. Comput..

[4]  Richard Lindaman,et al.  Axiomatic Majority-Decision Logic , 1961, IRE Trans. Electron. Comput..

[5]  S. Akers On the Algebraic Manipulation of Majority Logic , 1961 .

[6]  Charles H. Bennett,et al.  Logical reversibility of computation , 1973 .

[7]  Leslie G. Valiant,et al.  Short Monotone Formulae for the Majority Function , 1984, J. Algorithms.

[8]  Ingo Wegener,et al.  The complexity of Boolean functions , 1987 .

[9]  R Cuykendall,et al.  Reversible optical computing circuits. , 1987, Optics letters.

[10]  Barenco,et al.  Elementary gates for quantum computation. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[11]  M. Hosoya,et al.  Design and operation of a Quantum Flux Parametron bit-slice ALU , 1995, IEEE Transactions on Applied Superconductivity.

[12]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[13]  Guy Kindler,et al.  Optimal inapproximability results for MAX-CUT and other 2-variable CSPs? , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.

[14]  J.A. Abraham,et al.  Complex gate implementations for quantum dot cellular automata , 2004, 4th IEEE Conference on Nanotechnology, 2004..

[15]  Guowu Yang,et al.  Majority-based reversible logic gates , 2005, Theor. Comput. Sci..

[16]  Ryan O'Donnell,et al.  Noise stability of functions with low influences: Invariance and optimality , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).

[17]  A Imre,et al.  Majority Logic Gate for Magnetic Quantum-Dot Cellular Automata , 2006, Science.

[18]  Ryan O'Donnell,et al.  Optimal Inapproximability Results for MAX-CUT and Other 2-Variable CSPs? , 2007, SIAM J. Comput..

[19]  C. M. Chandrashekar,et al.  Quantum information processing using nuclear and electron magnetic resonance: review and prospects , 2007, 0710.1447.

[20]  Elchanan Mossel,et al.  Noise stability of functions with low influences: Invariance and optimality , 2005, IEEE Annual Symposium on Foundations of Computer Science.

[21]  Robert Wille,et al.  BDD-based synthesis of reversible logic for large functions , 2009, 2009 46th ACM/IEEE Design Automation Conference.

[22]  Mostafa Rahimi Azghadi,et al.  Five-Input Majority Gate, a New Device for Quantum-Dot Cellular Automata , 2010 .

[23]  Rami Akeela,et al.  A Five-input Majority Gate in Quantum-dot Cellular Automata , 2011 .

[24]  Peter Bro Miltersen,et al.  Secret Sharing and Secure Computing from Monotone Formulae , 2012, IACR Cryptol. ePrint Arch..

[25]  Yan Liu,et al.  Three-input majority logic gate and multiple input logic circuit based on DNA strand displacement. , 2013, Nano letters.

[26]  Igor L. Markov,et al.  Synthesis and optimization of reversible circuits—a survey , 2011, CSUR.

[27]  Giovanni De Micheli,et al.  Majority-Inverter Graph: A novel data-structure and algorithms for efficient logic optimization , 2014, 2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC).

[28]  Giovanni De Micheli,et al.  A Sound and Complete Axiomatization of Majority-n Logic , 2015, IEEE Trans. Computers.

[29]  Giovanni De Micheli,et al.  Optimizing Majority-Inverter Graphs with functional hashing , 2016, 2016 Design, Automation & Test in Europe Conference & Exhibition (DATE).