Asynchronous adaptive networks

In a recent article [1] we surveyed advances related to adaptation, learning, and optimization over synchronous networks. Various distributed strategies were discussed that enable a collection of networked agents to interact locally in response to streaming data and to continually learn and adapt to track drifts in the data and models. Under reasonable technical conditions on the data, the adaptive networks were shown to be mean-square stable in the slow adaptation regime, and their mean-square-error performance and convergence rate were characterized in terms of the network topology and data statistical moments [2]. Classical results for single-agent adaptation and learning were recovered as special cases. Following the works [3]-[5], this chapter complements the exposition from [1] and extends the results to asynchronous networks. The operation of this class of networks can be subject to various sources of uncertainties that influence their dynamic behavior, including randomly changing topologies, random link failures, random data arrival times, and agents turning on and off randomly. In an asynchronous environment, agents may stop updating their solutions or may stop sending or receiving information in a random manner and without coordination with other agents. The presentation will reveal that the mean-square-error performance of asynchronous networks remains largely unaltered compared to synchronous networks. The results justify the remarkable resilience of cooperative networks in the face of random events.

[1]  R. Durrett Probability: Theory and Examples , 1993 .

[2]  Ehud Weinstein,et al.  Convergence analysis of LMS filters with uncorrelated Gaussian data , 1985, IEEE Trans. Acoust. Speech Signal Process..

[3]  Derrick S. Tracy,et al.  A new matrix product and its applications in partitioned matrix differentiation , 1972 .

[4]  Ali H. Sayed,et al.  Bio-Inspired Decentralized Radio Access Based on Swarming Mechanisms Over Adaptive Networks , 2013, IEEE Transactions on Signal Processing.

[5]  Ali H. Sayed,et al.  Asynchronous Adaptation and Learning Over Networks—Part II: Performance Analysis , 2013, IEEE Transactions on Signal Processing.

[6]  John C. Duchi,et al.  Distributed delayed stochastic optimization , 2011, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).

[7]  H. Neudecker,et al.  Block Kronecker products and the vecb operator , 1991 .

[8]  H. Robbins A Stochastic Approximation Method , 1951 .

[9]  Stephen P. Boyd,et al.  Fast linear iterations for distributed averaging , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[10]  Stephen P. Boyd,et al.  A space-time diffusion scheme for peer-to-peer least-squares estimation , 2006, 2006 5th International Conference on Information Processing in Sensor Networks.

[11]  Ali H. Sayed,et al.  Diffusion adaptive networks with changing topologies , 2008, 2008 IEEE International Conference on Acoustics, Speech and Signal Processing.

[12]  Alexandros G. Dimakis,et al.  Reaching consensus in wireless networks with probabilistic broadcast , 2009, 2009 47th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[13]  Ali H. Sayed,et al.  Distributed Pareto Optimization via Diffusion Strategies , 2012, IEEE Journal of Selected Topics in Signal Processing.

[14]  Pascal Bianchi,et al.  Performance of a Distributed Stochastic Approximation Algorithm , 2012, IEEE Transactions on Information Theory.

[15]  Ali H. Sayed,et al.  Diffusion Strategies for Distributed Kalman Filtering and Smoothing , 2010, IEEE Transactions on Automatic Control.

[16]  Kumpati S. Narendra,et al.  Adaptation and learning in automatic systems , 1974 .

[17]  Sergios Theodoridis,et al.  Adaptive Learning in a World of Projections , 2011, IEEE Signal Processing Magazine.

[18]  Angelia Nedic,et al.  Distributed Asynchronous Constrained Stochastic Optimization , 2011, IEEE Journal of Selected Topics in Signal Processing.

[19]  Feng Yan,et al.  Distributed Autonomous Online Learning: Regrets and Intrinsic Privacy-Preserving Properties , 2010, IEEE Transactions on Knowledge and Data Engineering.

[20]  Ali H. Sayed,et al.  Proximal diffusion for stochastic costs with non-differentiable regularizers , 2015, 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[21]  J. A. Bondy,et al.  Graph Theory , 2008, Graduate Texts in Mathematics.

[22]  R. Berger A Necessary and Sufficient Condition for Reaching a Consensus Using DeGroot's Method , 1981 .

[23]  Qing Zhao,et al.  Distributed Learning in Wireless Sensor Networks , 2007 .

[24]  Dimitri P. Bertsekas,et al.  A New Class of Incremental Gradient Methods for Least Squares Problems , 1997, SIAM J. Optim..

[25]  John N. Tsitsiklis,et al.  Distributed asynchronous deterministic and stochastic gradient optimization algorithms , 1986 .

[26]  Stephen P. Boyd,et al.  Randomized gossip algorithms , 2006, IEEE Transactions on Information Theory.

[27]  Jie Chen,et al.  Diffusion LMS Over Multitask Networks , 2014, IEEE Transactions on Signal Processing.

[28]  K. Senne,et al.  Performance advantage of complex LMS for controlling narrow-band adaptive arrays , 1981 .

[29]  Bernard Widrow,et al.  Adaptive switching circuits , 1988 .

[30]  O. Sporns Networks of the Brain , 2010 .

[31]  G. Barrie Wetherill,et al.  Sequential methods in statistics , 1967 .

[32]  Ali H. Sayed,et al.  Analysis of Spatial and Incremental LMS Processing for Distributed Estimation , 2011, IEEE Transactions on Signal Processing.

[33]  Isao Yamada,et al.  Link probability control for probabilistic diffusion least-mean squares over resource-constrained networks , 2010, 2010 IEEE International Conference on Acoustics, Speech and Signal Processing.

[34]  Ali H. Sayed,et al.  Asynchronous Adaptation and Learning Over Networks—Part I: Modeling and Stability Analysis , 2013, IEEE Transactions on Signal Processing.

[35]  Ali H. Sayed,et al.  Diffusion Least-Mean Squares Over Adaptive Networks: Formulation and Performance Analysis , 2008, IEEE Transactions on Signal Processing.

[36]  Dudley,et al.  Real Analysis and Probability: Measurability: Borel Isomorphism and Analytic Sets , 2002 .

[37]  Alvaro R. De Pierro,et al.  Incremental Subgradients for Constrained Convex Optimization: A Unified Framework and New Methods , 2009, SIAM J. Optim..

[38]  Soummya Kar,et al.  Sensor Networks With Random Links: Topology Design for Distributed Consensus , 2007, IEEE Transactions on Signal Processing.

[39]  O. Nelles,et al.  An Introduction to Optimization , 1996, IEEE Antennas and Propagation Magazine.

[40]  Ali H. Sayed,et al.  Adaptive Networks with Noisy Links , 2011, 2011 IEEE Global Telecommunications Conference - GLOBECOM 2011.

[41]  Ali H. Sayed,et al.  Diffusion Adaptation over Networks , 2012, ArXiv.

[42]  Reza Olfati-Saber,et al.  Kalman-Consensus Filter : Optimality, stability, and performance , 2009, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.

[43]  Cédric Richard,et al.  Learning a common dictionary over a sensor network , 2013, 2013 5th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP).

[44]  Asuman E. Ozdaglar,et al.  Distributed Subgradient Methods for Multi-Agent Optimization , 2009, IEEE Transactions on Automatic Control.

[45]  Soummya Kar,et al.  Distributed Parameter Estimation in Sensor Networks: Nonlinear Observation Models and Imperfect Communication , 2008, IEEE Transactions on Information Theory.

[46]  Michael Athans,et al.  Convergence and asymptotic agreement in distributed decision problems , 1982, 1982 21st IEEE Conference on Decision and Control.

[47]  Dimitri P. Bertsekas,et al.  Incremental Subgradient Methods for Nondifferentiable Optimization , 2001, SIAM J. Optim..

[48]  Stephen P. Boyd,et al.  A space-time diffusion scheme for peer-to-peer least-squares estimation , 2006, 2006 5th International Conference on Information Processing in Sensor Networks.

[49]  Soummya Kar,et al.  Gossip Algorithms for Distributed Signal Processing , 2010, Proceedings of the IEEE.

[50]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[51]  Ali H. Sayed,et al.  On the generalization ability of distributed online learners , 2012, 2012 IEEE International Workshop on Machine Learning for Signal Processing.

[52]  A.H. Sayed,et al.  Diffusion LMS algorithms with information exchange , 2008, 2008 42nd Asilomar Conference on Signals, Systems and Computers.

[53]  Soummya Kar,et al.  Convergence Rate Analysis of Distributed Gossip (Linear Parameter) Estimation: Fundamental Limits and Tradeoffs , 2010, IEEE Journal of Selected Topics in Signal Processing.

[54]  Ali H. Sayed,et al.  Diffusion strategies for adaptation and learning over networks: an examination of distributed strategies and network behavior , 2013, IEEE Signal Processing Magazine.

[55]  Ohad Shamir,et al.  Optimal Distributed Online Prediction , 2011, ICML.

[56]  John N. Tsitsiklis,et al.  Convergence and asymptotic agreement in distributed decision problems , 1982 .

[57]  Soummya Kar,et al.  Distributed Consensus Algorithms in Sensor Networks: Quantized Data and Random Link Failures , 2007, IEEE Transactions on Signal Processing.

[58]  Dimitri P. Bertsekas,et al.  Convex Analysis and Optimization , 2003 .

[59]  Ali H. Sayed,et al.  Fundamentals Of Adaptive Filtering , 2003 .

[60]  George E. Andrews,et al.  Special Functions: Partitions , 1999 .

[61]  Ali H. Sayed,et al.  Diffusion mechanisms for fixed-point distributed Kalman smoothing , 2008, 2008 16th European Signal Processing Conference.

[62]  W. Gardner Learning characteristics of stochastic-gradient-descent algorithms: A general study, analysis, and critique , 1984 .

[63]  Ali H. Sayed,et al.  Diffusion Strategies Outperform Consensus Strategies for Distributed Estimation Over Adaptive Networks , 2012, IEEE Transactions on Signal Processing.

[64]  Ali H. Sayed,et al.  Modeling Bird Flight Formations Using Diffusion Adaptation , 2011, IEEE Transactions on Signal Processing.

[65]  F. Downton Stochastic Approximation , 1969, Nature.

[66]  Ali H. Sayed,et al.  Dictionary Learning Over Distributed Models , 2014, IEEE Transactions on Signal Processing.

[67]  Ali H. Sayed,et al.  Diffusion LMS Strategies for Distributed Estimation , 2010, IEEE Transactions on Signal Processing.

[68]  D. Hosmer,et al.  Applied Logistic Regression , 1991 .

[69]  Ali H. Sayed,et al.  Diffusion Least-Mean Squares Over Adaptive Networks , 2007, 2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP '07.

[70]  Cédric Richard,et al.  Multitask Diffusion Adaptation Over Asynchronous Networks , 2014, IEEE Transactions on Signal Processing.

[71]  Ali H. Sayed,et al.  Collaborative learning of mixture models using diffusion adaptation , 2011, 2011 IEEE International Workshop on Machine Learning for Signal Processing.

[72]  Ali H. Sayed,et al.  Sparse Distributed Learning Based on Diffusion Adaptation , 2012, IEEE Transactions on Signal Processing.

[73]  Asuman Ozdaglar,et al.  Cooperative distributed multi-agent optimization , 2010, Convex Optimization in Signal Processing and Communications.

[74]  C. G. Lopes,et al.  A diffusion rls scheme for distributed estimation over adaptive networks , 2007, 2007 IEEE 8th Workshop on Signal Processing Advances in Wireless Communications.

[75]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[76]  Khadija Iqbal,et al.  An introduction , 1996, Neurobiology of Aging.

[77]  Mikael Johansson,et al.  A Randomized Incremental Subgradient Method for Distributed Optimization in Networked Systems , 2009, SIAM J. Optim..

[78]  Yurii Nesterov,et al.  Introductory Lectures on Convex Optimization - A Basic Course , 2014, Applied Optimization.

[79]  S. Haykin,et al.  Adaptive Filter Theory , 1986 .

[80]  Ali H. Sayed,et al.  Adaptive Filters , 2008 .

[81]  Alfred O. Hero,et al.  A Convergent Incremental Gradient Method with a Constant Step Size , 2007, SIAM J. Optim..

[82]  Jie Chen,et al.  Multitask Diffusion Adaptation Over Networks , 2013, IEEE Transactions on Signal Processing.

[83]  Ali H. Sayed,et al.  Distributed adaptive learning mechanisms , 2009 .

[84]  Robert J. Plemmons,et al.  Nonnegative Matrices in the Mathematical Sciences , 1979, Classics in Applied Mathematics.

[85]  Ali H. Sayed,et al.  Diffusion strategies for distributed Kalman filtering: formulation and performance analysis , 2008 .

[86]  Golub Gene H. Et.Al Matrix Computations, 3rd Edition , 2007 .

[87]  Ali H. Sayed,et al.  Diffusion recursive least-squares for distributed estimation over adaptive networks , 2008, IEEE Transactions on Signal Processing.

[88]  Cédric Richard,et al.  Proximal Multitask Learning Over Networks With Sparsity-Inducing Coregularization , 2015, IEEE Transactions on Signal Processing.

[89]  Soummya Kar,et al.  Distributed Consensus Algorithms in Sensor Networks With Imperfect Communication: Link Failures and Channel Noise , 2007, IEEE Transactions on Signal Processing.

[90]  Angelia Nedic,et al.  Distributed Random Projection Algorithm for Convex Optimization , 2012, IEEE Journal of Selected Topics in Signal Processing.

[91]  L. Schmetterer STOCHASTIC APPROXIMATION , 2005 .

[92]  Ioannis D. Schizas,et al.  Performance Analysis of the Consensus-Based Distributed LMS Algorithm , 2009, EURASIP J. Adv. Signal Process..

[93]  Ali H. Sayed,et al.  Diffusion Adaptation Over Networks Under Imperfect Information Exchange and Non-Stationary Data , 2011, IEEE Transactions on Signal Processing.

[94]  W ReynoldsCraig Flocks, herds and schools: A distributed behavioral model , 1987 .

[95]  B. Widrow,et al.  Stationary and nonstationary learning characteristics of the LMS adaptive filter , 1976, Proceedings of the IEEE.

[96]  Olfati-Saber [IEEE 2007 46th IEEE Conference on Decision and Control - New Orleans, LA, USA (2007.12.12-2007.12.14)] 2007 46th IEEE Conference on Decision and Control - Distributed Kalman filtering for sensor networks , 2007 .

[97]  Ali H. Sayed,et al.  Distributed Estimation Over an Adaptive Incremental Network Based on the Affine Projection Algorithm , 2010, IEEE Transactions on Signal Processing.

[98]  Dimitri P. Bertsekas,et al.  Nonlinear Programming , 1997 .

[99]  Guy Theraulaz,et al.  Self-Organization in Biological Systems , 2001, Princeton studies in complexity.

[100]  Asuman E. Ozdaglar,et al.  A fast distributed proximal-gradient method , 2012, 2012 50th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[101]  T Y Al Naffouri,et al.  TRANSIENT ANALYSIS OF DATANORMALIZED ADAPTIVE FILTERS , 2003 .

[102]  Simon Haykin,et al.  Cognitive Dynamic Systems , 2007, 2007 4th International Conference on Electrical and Electronics Engineering.

[103]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[104]  I. Couzin Collective cognition in animal groups , 2009, Trends in Cognitive Sciences.

[105]  Ali H. Sayed,et al.  Incremental Adaptive Strategies Over Distributed Networks , 2007, IEEE Transactions on Signal Processing.

[106]  Ted G. Lewis,et al.  Network Science: Theory and Applications , 2009 .

[107]  Anand D. Sarwate,et al.  Broadcast Gossip Algorithms for Consensus , 2009, IEEE Transactions on Signal Processing.

[108]  Ali H. Sayed,et al.  Adaptive Processing over Distributed Networks , 2007, IEICE Trans. Fundam. Electron. Commun. Comput. Sci..

[109]  Robert D. Nowak,et al.  Quantized incremental algorithms for distributed optimization , 2005, IEEE Journal on Selected Areas in Communications.

[110]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[111]  Mark Newman,et al.  Networks: An Introduction , 2010 .

[112]  Sergios Theodoridis,et al.  A greedy sparsity-promoting LMS for distributed adaptive learning in diffusion networks , 2013, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.

[113]  J. Blum Multidimensional Stochastic Approximation Methods , 1954 .

[114]  Devavrat Shah,et al.  Gossip Algorithms , 2009, Found. Trends Netw..

[115]  B. Ripley,et al.  Pattern Recognition , 1968, Nature.

[116]  Ali H. Sayed,et al.  Diffusion stochastic optimization with non-smooth regularizers , 2016, 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[117]  L. Dworsky An Introduction to Probability , 2008 .

[118]  Ali H. Sayed,et al.  Diffusion LMS with communication constraints , 2010, 2010 Conference Record of the Forty Fourth Asilomar Conference on Signals, Systems and Computers.

[119]  A.H. Sayed,et al.  Distributed Recursive Least-Squares Strategies Over Adaptive Networks , 2006, 2006 Fortieth Asilomar Conference on Signals, Systems and Computers.

[120]  Ralph K. Cavin,et al.  Analysis of error-gradient adaptive linear estimators for a class of stationary dependent processes , 1982, IEEE Trans. Inf. Theory.

[121]  Ali H. Sayed,et al.  On the Learning Behavior of Adaptive Networks—Part II: Performance Analysis , 2013, IEEE Transactions on Information Theory.

[123]  W. Rudin Principles of mathematical analysis , 1964 .

[124]  Christos Faloutsos,et al.  Kronecker Graphs: An Approach to Modeling Networks , 2008, J. Mach. Learn. Res..

[125]  Ali H. Sayed,et al.  A unified approach to the steady-state and tracking analyses of adaptive filters , 2001, IEEE Trans. Signal Process..

[126]  Vladimir Vapnik,et al.  The Nature of Statistical Learning , 1995 .

[127]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[128]  J. Foley,et al.  A note on the convergence analysis of LMS adaptive filters with Gaussian data , 1988, IEEE Trans. Acoust. Speech Signal Process..

[129]  R. Mises,et al.  Praktische Verfahren der Gleichungsauflösung . , 1929 .

[130]  R. Olfati-Saber,et al.  Consensus Filters for Sensor Networks and Distributed Sensor Fusion , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[131]  José M. F. Moura,et al.  Distributing the Kalman Filter for Large-Scale Systems , 2007, IEEE Transactions on Signal Processing.

[132]  Ali H. Sayed,et al.  Distributed processing over adaptive networks , 2007, 2007 9th International Symposium on Signal Processing and Its Applications.

[133]  Milos S. Stankovic,et al.  Decentralized Parameter Estimation by Consensus Based Stochastic Approximation , 2011, IEEE Trans. Autom. Control..

[134]  Paolo Braca,et al.  Running consensus in wireless sensor networks , 2008, 2008 11th International Conference on Information Fusion.

[135]  Angelia Nedic,et al.  Distributed Stochastic Subgradient Projection Algorithms for Convex Optimization , 2008, J. Optim. Theory Appl..

[136]  Sergio Barbarossa,et al.  Fast Distributed Average Consensus Algorithms Based on Advection-Diffusion Processes , 2010, IEEE Transactions on Signal Processing.

[137]  Isao Yamada,et al.  Diffusion Least-Mean Squares With Adaptive Combiners: Formulation and Performance Analysis , 2010, IEEE Transactions on Signal Processing.

[138]  Sergios Theodoridis,et al.  Pattern Recognition, Fourth Edition , 2008 .

[139]  P. A. P. Moran,et al.  An introduction to probability theory , 1968 .

[140]  Karl Henrik Johansson,et al.  Subgradient methods and consensus algorithms for solving convex optimization problems , 2008, 2008 47th IEEE Conference on Decision and Control.

[141]  John N. Tsitsiklis,et al.  Gradient Convergence in Gradient methods with Errors , 1999, SIAM J. Optim..

[142]  Tareq Y. Al-Naffouri,et al.  Transient analysis of data-normalized adaptive filters , 2003, IEEE Trans. Signal Process..

[143]  Ali H. Sayed,et al.  Combination weights for diffusion strategies with imperfect information exchange , 2012, 2012 IEEE International Conference on Communications (ICC).

[144]  Ali H. Sayed,et al.  Performance Limits of Online Stochastic Sub-Gradient Learning , 2015, ArXiv.

[145]  Ali H. Sayed,et al.  On the Learning Behavior of Adaptive Networks—Part I: Transient Analysis , 2013, IEEE Transactions on Information Theory.

[146]  N. Cox Statistical Models in Engineering , 1970 .

[147]  Ali H. Sayed,et al.  Adaptive Networks , 2014, Proceedings of the IEEE.

[148]  Ali H. Sayed,et al.  Asynchronous Adaptation and Learning Over Networks—Part III: Comparison Analysis , 2013, IEEE Transactions on Signal Processing.

[149]  K.H. Johansson,et al.  Distributed and Collaborative Estimation over Wireless Sensor Networks , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[150]  S. Thomas Alexander,et al.  Adaptive Signal Processing , 1986, Texts and Monographs in Computer Science.

[151]  D. Rajan Probability, Random Variables, and Stochastic Processes , 2017 .

[152]  Charles M. Grinstead,et al.  Introduction to probability , 1999, Statistics for the Behavioural Sciences.

[153]  R. Olfati-Saber,et al.  Distributed Kalman Filter with Embedded Consensus Filters , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[154]  Mark E. J. Newman,et al.  The Structure and Function of Complex Networks , 2003, SIAM Rev..

[155]  Ali Sayed,et al.  Adaptation, Learning, and Optimization over Networks , 2014, Found. Trends Mach. Learn..

[156]  M. Degroot Reaching a Consensus , 1974 .

[157]  M. T. Wasan Stochastic Approximation , 1969 .

[158]  Mehran Mesbahi,et al.  Distributed Linear Parameter Estimation in Sensor Networks based on Laplacian Dynamics Consensus Algorithm , 2006, 2006 3rd Annual IEEE Communications Society on Sensor and Ad Hoc Communications and Networks.

[159]  Ali H. Sayed,et al.  On the limiting behavior of distributed optimization strategies , 2012, 2012 50th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[160]  S. Barbarossa,et al.  Bio-Inspired Sensor Network Design , 2007, IEEE Signal Processing Magazine.

[161]  Randal W. Beard,et al.  Consensus seeking in multiagent systems under dynamically changing interaction topologies , 2005, IEEE Transactions on Automatic Control.

[162]  Ali H. Sayed,et al.  Diffusion Adaptation Strategies for Distributed Optimization and Learning Over Networks , 2011, IEEE Transactions on Signal Processing.

[163]  H. Vincent Poor,et al.  A Collaborative Training Algorithm for Distributed Learning , 2009, IEEE Transactions on Information Theory.

[164]  A. Sayed,et al.  Diffusion distributed Kalman filtering with adaptive weights , 2009, 2009 Conference Record of the Forty-Third Asilomar Conference on Signals, Systems and Computers.

[165]  Azam Khalili,et al.  Steady-State Analysis of Diffusion LMS Adaptive Networks With Noisy Links , 2012, IEEE Transactions on Signal Processing.

[166]  Ali H. Sayed,et al.  Adaptive Penalty-Based Distributed Stochastic Convex Optimization , 2013, IEEE Transactions on Signal Processing.

[167]  Ali H. Sayed,et al.  Mobile Adaptive Networks , 2011, IEEE Journal of Selected Topics in Signal Processing.

[168]  Ali H. Sayed,et al.  Steady-State Performance of Adaptive Diffusion Least-Mean Squares , 2007, 2007 IEEE/SP 14th Workshop on Statistical Signal Processing.

[169]  Marc Moonen,et al.  Distributed Adaptive Node-Specific Signal Estimation in Fully Connected Sensor Networks—Part I: Sequential Node Updating , 2010, IEEE Transactions on Signal Processing.

[170]  Kostas Berberidis,et al.  Distributed diffusion-based LMS for node-specific parameter estimation over adaptive networks , 2014, 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[171]  J. Pedoe,et al.  Sequential Methods in Statistics , 1966 .

[172]  Isao Yamada,et al.  A proximal splitting approach to regularized distributed adaptive estimation in diffusion networks , 2013, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.

[173]  Sergios Theodoridis,et al.  A Sparsity Promoting Adaptive Algorithm for Distributed Learning , 2012, IEEE Transactions on Signal Processing.

[174]  Ruggero Carli,et al.  Distributed Kalman filtering using consensus strategies , 2007, 2007 46th IEEE Conference on Decision and Control.

[175]  John N. Tsitsiklis,et al.  Parallel and distributed computation , 1989 .

[176]  K. Senne,et al.  Performance advantage of complex LMS for controlling narrow-band adaptive arrays , 1981 .

[177]  M. Abramowitz,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[178]  Eiichi Isogai A stochastic approximation method approximating the roots of time varying regression functions , 1985 .

[179]  Benoît Champagne,et al.  Diffusion LMS algorithms for sensor networks over non-ideal inter-sensor wireless channels , 2011, 2011 International Conference on Distributed Computing in Sensor Systems and Workshops (DCOSS).

[180]  A. Rantzer,et al.  Distributed Kalman Filtering Using Weighted Averaging , 2006 .

[181]  José M. F. Moura,et al.  Cooperative Convex Optimization in Networked Systems: Augmented Lagrangian Algorithms With Directed Gossip Communication , 2010, IEEE Transactions on Signal Processing.

[182]  S. Pillai,et al.  The Perron-Frobenius theorem: some of its applications , 2005, IEEE Signal Processing Magazine.

[183]  José M. F. Moura,et al.  Weight Optimization for Consensus Algorithms With Correlated Switching Topology , 2009, IEEE Transactions on Signal Processing.

[184]  Ali H. Sayed,et al.  Performance Limits for Distributed Estimation Over LMS Adaptive Networks , 2012, IEEE Transactions on Signal Processing.

[185]  Feller William,et al.  An Introduction To Probability Theory And Its Applications , 1950 .