Identifying dense subgraphs in protein–protein interaction network for gene selection from microarray data

[1]  Juancarlos Chan,et al.  Gene Ontology Consortium: going forward , 2014, Nucleic Acids Res..

[2]  David Correa Martins,et al.  Multiview Clustering on PPI Network for Gene Selection and Enrichment from Microarray Data , 2014, 2014 IEEE International Conference on Bioinformatics and Bioengineering.

[3]  Zhining Wen,et al.  Identifying the Gene Signatures from Gene-Pathway Bipartite Network Guarantees the Robust Model Performance on Predicting the Cancer Prognosis , 2014, BioMed research international.

[4]  Bibhas Chandra Dhara,et al.  Selection of genes mediating certain cancers, using a neuro-fuzzy approach , 2014, Neurocomputing.

[5]  Stephan Stilgenbauer,et al.  Prognostic and predictive factors in patients with chronic lymphocytic leukemia: relevant in the era of novel treatment approaches? , 2014, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[6]  Yidong Chen,et al.  A novel significance score for gene selection and ranking , 2014, Bioinform..

[7]  K. Munger,et al.  Human viral oncogenesis: a cancer hallmarks analysis. , 2014, Cell host & microbe.

[8]  Xiaomei Quan,et al.  Survey: Functional Module Detection from Protein-Protein Interaction Networks , 2014, IEEE Transactions on Knowledge and Data Engineering.

[9]  Sanghyun Park,et al.  Integrative Gene Network Construction to Analyze Cancer Recurrence Using Semi-Supervised Learning , 2014, PloS one.

[10]  G. Tseng,et al.  Beyond modules and hubs: the potential of gene coexpression networks for investigating molecular mechanisms of complex brain disorders , 2014, Genes, brain, and behavior.

[11]  T. Ideker,et al.  Integrative approaches for finding modular structure in biological networks , 2013, Nature Reviews Genetics.

[12]  Holger Fröhlich,et al.  Network and Data Integration for Biomarker Signature Discovery via Network Smoothed T-Statistics , 2013, PloS one.

[13]  Charalampos E. Tsourakakis,et al.  Denser than the densest subgraph: extracting optimal quasi-cliques with quality guarantees , 2013, KDD.

[14]  Maria Braoudaki,et al.  Protein biomarkers distinguish between high- and low-risk pediatric acute lymphoblastic leukemia in a tissue specific manner , 2013, Journal of Hematology & Oncology.

[15]  Yong Wang,et al.  iPcc: a novel feature extraction method for accurate disease class discovery and prediction , 2013, Nucleic acids research.

[16]  Xuegong Zhang,et al.  Integrating gene expression and protein-protein interaction network to prioritize cancer-associated genes , 2012, BMC Bioinformatics.

[17]  Lin Gao,et al.  Predicting protein complexes in protein interaction networks using a core-attachment algorithm based on graph communicability , 2012, Inf. Sci..

[18]  Holger Fröhlich,et al.  Review Biomarker Gene Signature Discovery Integrating Network Knowledge , 2012 .

[19]  Rafael C. Jimenez,et al.  The IntAct molecular interaction database in 2012 , 2011, Nucleic Acids Res..

[20]  Livia Perfetto,et al.  MINT, the molecular interaction database: 2012 update , 2011, Nucleic Acids Res..

[21]  Yike Guo,et al.  Finding consistent disease subnetworks across microarray datasets , 2011, BMC Bioinformatics.

[22]  Sanghyun Park,et al.  Integrative gene network construction for predicting a set of complementary prostate cancer genes , 2011, Bioinform..

[23]  Martin Ester,et al.  Optimally discriminative subnetwork markers predict response to chemotherapy , 2011, Bioinform..

[24]  D. Hanahan,et al.  Hallmarks of Cancer: The Next Generation , 2011, Cell.

[25]  Fengzhu Sun,et al.  Integrating multiple protein-protein interaction networks to prioritize disease genes: a Bayesian regression approach , 2011, BMC Bioinformatics.

[26]  Andreas Bender,et al.  Interaction-based feature selection for predicting cancer-related proteins in protein-protein interaction networks , 2011 .

[27]  David Galas,et al.  Systems biology of interstitial lung diseases: integration of mRNA and microRNA expression changes , 2011, BMC Medical Genomics.

[28]  A. Barabasi,et al.  Network medicine : a network-based approach to human disease , 2010 .

[29]  Charu C. Aggarwal,et al.  A Survey of Algorithms for Dense Subgraph Discovery , 2010, Managing and Mining Graph Data.

[30]  Igor Jurisica,et al.  Inferring the functions of longevity genes with modular subnetwork biomarkers of Caenorhabditis elegans aging , 2010, Genome Biology.

[31]  Frederick P. Roth,et al.  Next generation software for functional trend analysis , 2009, Bioinform..

[32]  Santo Fortunato,et al.  Community detection in graphs , 2009, ArXiv.

[33]  David Warde-Farley,et al.  Dynamic modularity in protein interaction networks predicts breast cancer outcome , 2009, Nature Biotechnology.

[34]  Wei Pan,et al.  Network-based support vector machine for classification of microarray samples , 2009, BMC Bioinformatics.

[35]  Brad T. Sherman,et al.  Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists , 2008, Nucleic acids research.

[36]  Sandhya Rani,et al.  Human Protein Reference Database—2009 update , 2008, Nucleic Acids Res..

[37]  Steve Horvath,et al.  WGCNA: an R package for weighted correlation network analysis , 2008, BMC Bioinformatics.

[38]  Tobias Müller,et al.  Identifying functional modules in protein–protein interaction networks: an integrated exact approach , 2008, ISMB.

[39]  Michael Q. Zhang,et al.  Network-based global inference of human disease genes , 2008, Molecular systems biology.

[40]  R. Sharan,et al.  Protein networks in disease. , 2008, Genome research.

[41]  Jean-Loup Guillaume,et al.  Fast unfolding of communities in large networks , 2008, 0803.0476.

[42]  Brad T. Sherman,et al.  Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources , 2008, Nature Protocols.

[43]  T. Ideker,et al.  Network-based classification of breast cancer metastasis , 2007, Molecular systems biology.

[44]  M. Koss,et al.  The pathology of pulmonary sarcoidosis: update. , 2007, Seminars in diagnostic pathology.

[45]  A. Barabasi,et al.  The human disease network , 2007, Proceedings of the National Academy of Sciences.

[46]  Tao Jiang,et al.  A max-flow based approach to the identification of protein complexes using protein interaction and microarray data. , 2008, Computational systems bioinformatics. Computational Systems Bioinformatics Conference.

[47]  Emmanuel Barillot,et al.  Classification of microarray data using gene networks , 2007, BMC Bioinformatics.

[48]  Ramón Díaz-Uriarte,et al.  Gene selection and classification of microarray data using random forest , 2006, BMC Bioinformatics.

[49]  Aidong Zhang,et al.  Selecting informative genes from microarray dataset by incorporating gene ontology , 2005, Fifth IEEE Symposium on Bioinformatics and Bioengineering (BIBE'05).

[50]  John D. Storey,et al.  A network-based analysis of systemic inflammation in humans , 2005, Nature.

[51]  Pablo Tamayo,et al.  Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[52]  G. Gahrton,et al.  Identification of progression markers in B-CLL by gene expression profiling. , 2005, Experimental hematology.

[53]  Jiawei Han,et al.  Mining coherent dense subgraphs across massive biological networks for functional discovery , 2005, ISMB.

[54]  Qing Wang,et al.  Towards precise classification of cancers based on robust gene functional expression profiles , 2005, BMC Bioinformatics.

[55]  P. Shannon,et al.  Cytoscape: a software environment for integrated models of biomolecular interaction networks. , 2003, Genome research.

[56]  Joshua M. Stuart,et al.  A Gene-Coexpression Network for Global Discovery of Conserved Genetic Modules , 2003, Science.

[57]  D. Sterner,et al.  Acetylation of Histones and Transcription-Related Factors , 2000, Microbiology and Molecular Biology Reviews.

[58]  H. Magdelenat,et al.  Ubiquitin-Proteasome System and Increased Sensitivity of B-CLL Lymphocytes to Apoptotic Death Activation , 2000, Leukemia & lymphoma.

[59]  Anton J. Enright,et al.  Protein interaction maps for complete genomes based on gene fusion events , 1999, Nature.

[60]  S. Archer,et al.  Histone acetylation and cancer. , 1999, Current opinion in genetics & development.

[61]  Andrew V. Goldberg,et al.  Finding a Maximum Density Subgraph , 1984 .

[62]  M. DePamphilis,et al.  HUMAN DISEASE , 1957, The Ulster Medical Journal.